Chemical sensing with graphene: A quantum field theory perspective

Enrique Muñoz
Pontifical Catholic University of Chile, Vicuña Mackenna 4860, Santiago, Chile
munozt@fis.puc.cl

Abstract

We studied theoretically the effect of a low concentration of adsorbed polar molecules on the optical conductivity of graphene, within the Kubo linear response approximation[1]. Our analysis is based on a continuum model that includes up to next-to-nearest neighbors in the pristine graphene effective Hamiltonian[2,3]. Our results show that the conductivity can be expressed in terms of renormalized quasiparticle parameters that include the effect of the molecular surface concentration and dipolar moment, thus providing a quantum field theory approach to model a graphene-based chemical sensor[1].

REFERENCES

FIGURES

Figure 1: Pictorial (not in actual scale) representation of polar molecules adsorbed at positions \(R_i \) and \(R_j \) on the surface of graphene[1].

Figure 2: Optical conductivity of graphene, calculated from our theory[1], at different surface concentrations of adsorbed polar molecules.