One-pot room temperature and microwave-assisted synthesis of Ce_xZr_{1-x}O₂ nanoparticles

Chuanli Zhang, Juan Pellico, Muling Zeng, Anna

Materials Science Institute of Barcelona (ICMAB-CSIC), Bellaterra, 08193, Barcelona, Spain

czhang@icmab.es

Abstract

Cerium oxide nano-enzymes have emerged as promising candidates for biomedical applications, offering superior stability, lower production costs, and enhanced environmental adaptability compared to natural enzymes. Their main advantage arises from their intrinsic redox activity, driven by the reversible cycling between Ce3+ and Ce4+ oxidation states. [1] Metal doping, particularly with Zr4+, can improve their antioxidant efficiency further, increase oxygen concentration, and enhance redox performance.[2-3] However, despite extensive research on doped systems, there remains a lack of methodologies for synthesizing $Ce_xZr_{1-x}O_2$ nanoparticles different compositions to optimize and compare their relative scavenging capability of the reactive oxygen species (ROS).

Here, we developed two simple and economical one-pot synthesis methods, room temperature (RT) microwave-assisted (MW), to produce hydrophilic (RT) and hydrophobic (MW) Ce_xZr_{1-x}O₂ nano-enzymes with different Ce:Zr ratios. [3-4] By and fine-tuning controlling precursor ratios parameters such as temperature, reaction time, and addition rate, we achieved different levels of Zr doping within the CeO₂ framework. Characterization Transmission electron microscopy (TEM) revealed average particle sizes of 3.3 nm and 2.6 nm for RT and MW CeO₂ NPs, respectively (Figure 1 A). X-ray diffraction (XRD) analysis confirmed the successful incorporation of Zr into the CeO₂ NPs, as evidenced by the systematic shift of diffraction peaks toward higher angles, indicative of lattice contraction (Figure 1B and C). For the MW sample, we calculated a lattice constant (a') of 5.306 Å corresponding to the theoretical value for $Ce_{0.5}Zr_{0.5}O_2$ (a' = 5.305 Å). In the case of hydrophilic RT $Ce_xZr_{1-x}O_2$ nanoparticles, the progressive shift of XRD peaks with varying precursor ratios further validated the formation of Ce_xZr_{1-x}O₂ with distinct Ce:Zr compositions.

Future work will focus on their encapsulation within poly (lactic-co-glycolic acid) (PLGA) nanoparticles for targeted application in cancer.

References

- [1] Kim, Y.G., et al., Adv. Mater., 2024, 36, 2210819.
- [2] Liu Y, Chen H, Chai L, et al. Sensors and Actuators B: Chemical, 2025, 437: 137709.
- [3] van Gent, J. and A. Roig, Nanoscale, 2023. 15(31): p. 13018-13024.
- [4] Parra-Robert, M., et al. Biomolecules 2019, 9,

Figures

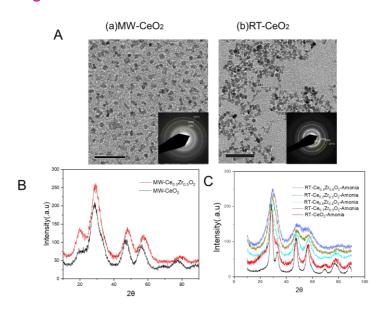


Figure 1. (A) TEM MW CeO2 and RT CeO2, (B) XRD of MW CexZr1-xO2, (C) XRD of RT CexZr1-xO2