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Solid-state electronic junctions of biological 
macromolecules – from DNA to functionally more 
diverse proteins – have become of increasing 
interest given several truly astonishing properties, 
such as efficient transport of electrons over longer 
than expected distances[1]. That transport often 
shows no significant or minimal change when the 
junctions are cooled to 10 Kelvin or even lower[2].  
  The potential to incorporate proteins as active 
elements in electronic devices has thus prompted 
numerous experimental and theoretical studies to 
understand the current flow through proteins in solid-
state junctions and how to control it. With the rising 
interest came the awareness that the theoretical 
description of the electron transport mechanism 
through these junctions is very challenging because 
different conductance regimes have been observed 
depending on the experimental conditions. This 
situation led to an ongoing debate, highlighting the 
lack of well-tested theoretical models capable of 
describing all the different behaviors these systems 
show. 
  According to our model[3], for junctions based on 
ultra-thin films of two types of electron transfer 
proteins, the conductance at sufficiently low 
temperatures is no longer dominated by electrons 
activated from the HOMO to LUMO orbitals. Instead, 
electrons from the electrode can tunnel into spatially 
close, localized states of the protein and then, within 
the protein, descend – in energy – to low-lying 
states, such as the LUMO and LUMO+1. Electrons 
escaping from LUMO+1 modulate the conductance 
with a temperature-dependent contribution with an 
Arrhenius-like factor.  

  We could extract the corresponding activation 
energies and, using advanced DFT calculations[4,5], 
get the relevant energy differences that match the 
activation energies well, implying the mechanism's 
validity. 
  While our Landauer-based model reproduces the 
experimental temperature-current results, it is more 
important and convincing that it explains, for the first 
time, the empirical observation of how just one of the 
contacts defines the behavior of the complete 
junction. 
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Figure 1. Illustration of the solid-state protein junction and the 
proposed mechanism. 

 


