
 

nanoBalkan2025                                                                            Tirana (Albania) 

Recent developments in machine learning force fields: Foundation models, 
symmetries, constraints, and long-range interactions 

 
Marcel F. Langer 

Laboratory of Computational Science and Modeling 
École Polytechnique Fédérale de Lausanne 
1015 Lausanne, Switzerland 
marcel.langer@epfl.ch 
 

 

Molecular dynamics simulations are ubiquitous in physics, chemistry, and biology. While they have 
been traditionally driven by force fields, machine learning interatomic potentials (MLIPs) trained on 
first-principles reference data have emerged as a data-driven and more accurate, albeit less 
computationally efficient, alternative. Over the last few years, the field has developed rapidly. This 
talk will provide an overview of some recent developments and discusses their impact in practice. 
 
Rather than training models for specific systems, so-called universal potentials, or foundation 
models, have been proposed recently.1,2 They are trained on large databases with diverse chemistry 
and are expected to predict the dynamics of unseen systems to good accuracy. Operating at scale, 
these models have put into question many design principles for MLIPs that were previously 
considered essential. For instance, some models discard rotational invariance in favour of simpler 
and scalable architectures, while others even disregard the notion of energy-conserving forces. In 
this talk, I will discuss our recent work3,4 on probing the impact of these design choices, finding that 
while rotational symmetry can be learned relatively easily from data, conservative forces are 
essential for physically meaningful and stable simulations. 
 
While force fields have included long-range electrostatics and dispersion corrections for a long time, 
MLIPs have only recently begun to consider such effects, in part due to the lack of efficient and 
differentiable implementations5. Different mechanisms for including long-range interactions, ranging 
from simple physical terms added to the total energy to purely data-driven transformers, have been 
proposed. I present an overview of relevant benchmarks and discuss our recently long-range 
message passing model LOREM6. 
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