
Multi-enzyme MOF nanoreactors transplant a drug biosynthesis pathway into cells

Raik Grünberg

Ainur Sharip, Somayah S. Qutub, Manar M. Farooqui, Walaa Baslyman, Nida Khalfay, Lukman O. Alimi, Patricia Lopez Sanchez, Lingyun Zhao, Milena Chernyshevskaia, Giovanni Colombo, Niveen M.Khashab, Stefan T. Arold Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia raik.grunberg@kaust.edu.sa

Most proteins evolved to function as team players within multi-protein systems such as metabolic networks or signaling pathways. By contrast, most technical protein applications are built around one isolated protein, such as a therapeutic antibody or an industrial enzyme. Reliable methods for the stabilization, *in vitro* operation and intracellular delivery of multi-protein systems could unlock new applications in biotechnology, diagnostics, and in medical therapy. We are combining hierarchically engineered metal organic framework (MOF) nanoparticles with the *in vitro* reconstituted six-enzyme pathway for the biosynthesis of violacein. Pathway-MOF nanoreactors produced higher amounts of violacein than solute enzymes, enabled pathway reuse, lyophilisation and storage. Infiltration into MOFS modified pathway kinetics and side product formation and unlocks a long steady state production phase that could not be achieved with the free enzyme system. More importantly, MOF nanoreactors can deliver the entire multi-protein system into mammalian cells where it interfaces with the metabolic state of cancer cells leading to the enhanced production of the cytotoxic violacein as an *in-situ* therapeutic (Figure 1). To date, this represents the most complex protein system delivered into cells. We believe that violacein nanoreactors may pave the way towards a novel class of intracellular protein systems therapies.

Figures

Figure 1: Illustration of multi-enzyme nanoreactors and their delivery into mammalian cells where the pathway produces the cytotoxic natural product violacein from intracellular substrates (tryptophan) and cosubstrates (NADPH+H⁺).

nanoBalkan2025 Tirana (Albania)