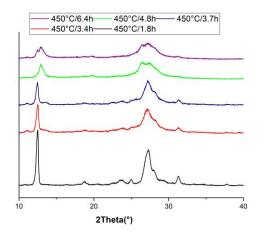
Controlled Synthesis of Graphitic Carbon Nitride (g-C₃N₄) via Melamine Polymerization Using Experimental Design

Meriem Gouasmi^a

Eugenio Alladio^a, Vasile-Dan Hodoroaba^b, Paul Mrkwitschka^b, Jörg Radnik^b, Enrico Salvadori^a, Fabrizio Sordello^a, Francesco Pellegrino^a,

a Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, 10125 Torino, Italy. b Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203, Berlin, Germany) E-mail: Meriem.gouasmi@unito.it


Abstract

Graphitic carbon nitride $(g-C_3N_4)$ is an emerging carbon-based polymer that exhibits semiconductor behaviour, notable for its stability under chemical and photonic stress and activation under visible light due to its 2.7 eV bandgap [1]. Structurally composed of triazine (C_3N_3) and more stable heptazine $(C_6N_7$ or tri-s-triazine) units, $g-C_3N_4$ forms a layered architecture with strong π -conjugation and van der Waals interactions, making it ideal for photocatalytic and energy applications [2]. In this study, we investigate the synthesis of $g-C_3N_4$ via thermal polymerization of melamine in a nitrogen atmosphere, as outlined by the mechanistic pathway involving melamine, melem, and melon intermediates [3]. To optimize the material properties, we employed a Central Composite Design (CCD) experimental strategy, focusing on three critical parameters: temperature, heating rat6 , and synthesis duration. Each experimental run was designed to reveal how these factors influence the structural and morphological features of $g-C_3N_4$, as characterized by X-ray diffraction, UV diffuse reflectance, fluorescence spectroscopy and complementary techniques. Finally, the photocatalytic properties of all synthesized materials have been investigated towards the degradation of phenol.

References

- [1] T. Muhmood, I. Ahmad, Z. Haider, S.K. Haider, N. Shahzadi, A. Aftab, S. Ahmed, F. Ahmad, Materials Today Sustainability 25 (2024) 100633.
- [2] V.Yu. Yurova, D.Yu. Piarnits, I.V. Moskalenko, I.S. Smirnov, I.V. Maltceva, V.A. Krylov, V.E. Sitnikova, E. Smirnov, E.V. Skorb, Carbon Trends (2025) 100522.
- [3] R. Vijayarangan, M. Sakar, R. Ilangovan, J Mater Sci: Mater Electron 33 (2022) 9057–9065.

Figures

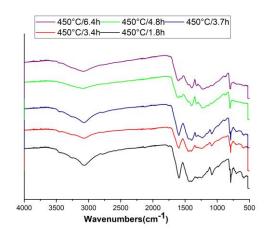


Figure 1: XRD and FTIR Characterization of g-C₃N₄ Synthesized at 450 °C

nanoBalkan2025 Tirana (Albania)