Electroreduction of Furfural on a Diamond Electrode

Riyako Matsuoka

Takashi Yamamoto, Yasuaki Einaga Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan. riyakomatsuoka@keio.jp

In recent years, biomass has attracted attention as a raw material for sustainable material production [1]. In addition, electro-organic synthesis has attracted attention as a clean technology that does not involve excess reagent waste, as the reaction is initiated by electron transfer on the electrodes. Along these lines, we aimed to convert biomass-derived material into a fuel precursor: electroreduction of furfural to furfuryl alcohol.

Constant current electrolysis was performed in an undivided batch cell: furfural (1; 0.1 M), MeOH (5.0 mL), 0.50 mA/cm², 400 rpm, and rt. Supporting electrolytes, electrode materials, and the amount of charge (referring to 1) were screened to optimize reaction conditions. Products were identified by gas chromatography-mass spectrometry (GC-MS).

Electroreduction of **1** produced furfuryl alcohol (**2**). The highest GC-MS yield of **2** was 21% under optimum conditions: (anode) graphite, (cathode) boron-doped diamond (BDD), (supporting electrolyte) KOH (0.15 M), (current density) 2.0 mA/cm², and (amount of charge) 4.0 F (referring to **1**) (*Table 1*, entry 8). For a supporting electrolyte, not only the inorganic salt (KOH) but also the organic salt (Bu₄NOH) was investigated, indicating that the size of cation species of supporting electrolytes affects the yield of **2**. It is noted that this tendency is also observed in the previous study of microflow electrolysis of **1** [2]. In terms of the amount of charge, GC-MS yields were high when the amount of charge was greater than 2.0 F. Since the present reaction is assumed to be a two-electron reaction, it is suggested that a side reaction to afford 2-furoic acid methyl ester (**3**) is proceeded (*Scheme 1*).

References

- [1] J. A. Schaidle, A. Holewinski et al., ACS Energy Lett. 6 (2021), 1205.
- [2] Y. Cao, T. Noël, Org. Process Res. Dev. 23 (2019), 403.

Table 1. Screening of reaction conditions.

Electrode, Supporting electrolyte, Amount of charge (referring to 1), Current density, MeOH, rt.

Entry	Electrode	Supporting electrolyte	Amount of charge (referring to 1)	Current density	GC-MS yields	
	Anode / Cathode				1/%	2 /%
1	Cu / BDD	Bu ₄ NOH	2.0 F	2.0 mA/cm ²	43	4
2	Cu / BDD	кон	2.0 F	2.0 mA/cm ²	36	13
3	Graphite / BDD	кон	2.0 F	2.0 mA/cm ²	28	15
4	Graphite / BDD	кон	1.0 F	2.0 mA/cm ²	21	13
5	Graphite / BDD	кон	4.0 F	2.0 mA/cm ²	30	18
6	Graphite / BDD	кон	4.0 F	0.50 mA/cm ²	37	21

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

Scheme 1. Plausible side reaction in the electroreduction of furfural (1).

nanoBalkan2024 Tirana (Albania)