Plasma-Treated and Doped WS₂ Nanoparticles for Energy Applications

Alex Laikhtman¹

Alla Zak¹, Arie Borenstein², Julio A. Alonso³, Jose Ignacio Martinez⁴

Multiwall WS₂ nanotubes and polyhedral fullerene-like nanoparticles were discovered in the earlier 1990s. An efficient synthesis method for the scaled-up production of high purity inorganic fullerene WS₂ nanoparticles was later developed, which allows to produce tens of kilograms per day. The availability of these nanomaterials led to investigation of their properties, and stimulated numerous applications in energy related applications, some of them have been recently investigated by us and include hydrogen storage [1], electrocatalysts [2], and solar cells [3].

We developed a new method of surface modification of WS₂ nanotubes through cold radiofrequency (RF) plasma for hydrogen evolution reaction (HER). The effect of plasmatic ions on WS₂ nanotubes has been investigated. The plasma-treated samples showed improved performances in HER electrocatalysis. Both Ar and D₂ RF plasma treatments, when performed separately, show similar effects on electrocatalysis performances with improved HER overpotentials of ~340 mV at 10mA/cm^2 compared to 567 mV of the pristine WS₂ nanotubes, whereas the combined treatment by Ar and then by D₂ RF plasma notably decreased the overpotential to 264 mV.

Additional, currently developed application of WS₂ nanoparticles is to integrate them in perovskite solar cells (PSCs). Photoinduced degradation, thermal effects, and chemical reactions result in degradation of such PSCs. Using our currently developing approach we aim to overcome their instability by developing the novel hybrid PSC/MS₂ nanocomposites, as shown in Fig. 1. MS₂ (M = W or Mo) nanotubes are capable of absorbing a wide range of visible light and are very stable. Combining MS₂ nanotubes and perovskites can increase the stability of so produced composite. As MS₂ nanotubes support polaritonic modes at room temperature, they are optically active in Vis and NIR-IR regions and so can be utilized for light absorption and emission across this spectral range. The composites of perovskites/MS₂ nanotubes offer an additional benefit of charge transfer. For this purpose, they are being exposed to focused ion beams to induce Ga implantation so achieving the improvement of their conductivity and decrease of the band gap [4].

References

- [1] A. Laikhtman et al., J. Phys. Chem. C, 121 (2017) 11747
- [2] A. Dutta, A. Laikhtman, A. Zak, A. Borenstein, J. Mater. Chem. A, (2024) under review.
- [3] P. N. Immanuel et. al., Adv. Energy Sustainability Res., 5 (2024) 2300193.
- [4] J. I. Martínez, A. Laikhtman, A. Zak, M. Sezen, J. A. Alonso, Small, (2024) 2312235.

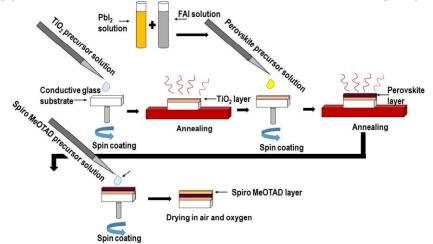


Figure 1: Schematic view of the steps in the WS₂/PSC assembly.

nanoBalkan2024 Tirana (Albania)

¹Holon Institute of Technology (HIT), 52 Golomb St., Holon, Israel

²Department of Chemical Sciences, Ariel University, Ariel, Israel

³Departament of Theoretical, Atomic and Optical Physics, University of Valladolid, Valladolid, Spain

⁴Department of Low-dimensional Systems, Institute of Materials Science of Madrid (ICMM-CSIC), Madrid, Spain alexl@hit.ac.il