Comparison of two methods for graphene oxide nanomaterials synthesis for the analyte signal production

Erona Ibrahimi^a

Andi Halilaj^a, Albana Veseli^{a,b}, Flamur Sopaj^{a,b}

^aDepartment of Chemistry, Faculty of Natural and Mathematical Science, University of Prishtina, str. George Bush, 10000 Prishtina, Kosovo

Abstract

Carbon based materials are widely used for electrochemical sensing as well as anodes for electrochemical removal of organic pollutants from aquatic media [1,2]. Graphene has attracted a lot of attention for electrochemical applications, due to its characteristic physic-chemical properties. In this work graphene oxide nanomaterials were synthetized by electrochemical exfoliation and the modified Hummer's method [3]. The obtained nanomaterials were applied comparatively as modifiers for carbon paste working electrode for cyclic voltammetry of azithromycin (AZT) in phosphate buffer (PBS) at pH 8.5 [4]. The material was prepared in the form of paste and lodged into the teflon holder. Both materials produced improved voltammetric peaks for AZT, in comparison to carbon paste electrode.

References

- [1] A. Veseli, Ľ. Švorc, F. Sopaj, Electroanalysis, 33 (2021), pp. 2196-2203, https://doi.org/10.1002/elan.202100183.
- [2] H. Afanga, H. Zazou, F. E. Titchou, J. E. Gaayda, F. Sopaj, R. A. Akbour, M. Hamdani, Journal of Environmental Chemical Engineering, 1 (2021) 104498. <u>https://doi.org/10.1016/j.jece.2020.104498</u>.
- [3] E.H. Sujiono, Zurnansyah, D. Zabrian, M.Y. Dahlan, B.D. Amin, Samnur, J. Agus, Heliyon, 6 (2020) e04568.
- [4] F. Sopaj, F. Loshaj, A. Contini, E. Mehmeti, A. Veseli, Results in Chemistry, 6 (2023) 101123. https://doi.org/10.1016/j.rechem.2023.101123.

Figures

Figure 1: Voltammogram of azithromycin. [AZT] = 50 μ M, Scan rate = 0.05 V/s, PBS pH = 8.5.

^bAcademy of Science of Albania, Unit of Albanian Nano-science and Nanotechnology - NanoAlb 1000 Tirana, Albania <u>erona.ibrahimi@student.uni-pr.edu</u>