The gigantic energy consumption problem of our IT technologies... Artificial Intelligence at rescue?

Stephan Roche 1,3

¹Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, Bellaterra, 08193, Barcelona, Spain ²ICREA Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain stephan.roche@icn2.cat

Abstract

In this talk, I will discuss some of the great challenges that our Information Technologies are facing today in terms of data storage and energy consumption. The gigantic needs for data storage facilities in a society of massive information processing and with the emergence of Artificial intelligence at all levels of technologies accelerate the crucial demand for developing low-energy dissipative devices, circuits and technologies together with the development of sustainable energy power sources.

Here I will illustrate the use of AI (machine learning) technique to boost the innovation in materials by presenting our simulation activities supported by SAMSUNG in the field of mircorelectronics. I will also mention our new project concerning the massive deployment of AI tools to boost the search for optimized van der Waals heterostructures achieving efficient spin-to-charge conversion for future non-volatile memory technologies, or our project to develop novel workflows to enhance the capability of STEM equipment towards predictive modelling and direct access to materials properties and device performances.

Acknowledgement

This project has been supported by Samsung Advanced Institute of Technology and is conducted under the REDI Program, a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101034328. Simulations were performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, supported by the U.S. DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Additional computational support was received from the King Abdullah University of Science and Technology-KAUST (Supercomputer Shaheen II Cray XC40) and Texas Advanced Computing Center (TACC) at The University of Texas at Austin.