Shogo Nihongi¹

Takashi Yamamoto¹, Tsuyoshi Saitoh², Yasuaki Einaga¹

¹Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan. ²International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan. sho-1004-go@keio.jp

Electro-organic synthesis has attracted attention from the viewpoint of sustainability because reactions can proceed well even at ambient conditions [1]. However, in a generic batch reactor, long reaction time is generally required, leading to a poor product selectivity due to side reactions. On the other hand, in a flow reactor, products flow outside the reaction system, which improves the selectivity by suppressing side reactions. Herein, we report selective molecular transformation of cumene in electrochemical batch and flow reactors.

A solution of cumene (1) and Et₄NClO₄ (0.1 M) in MeCN was transferred into the undivided electrochemical reactors equipped with boron-doped diamond (BDD) anode and cathode. A constant current electrolysis was performed at room temperature.

In the batch reactor, **1** was electrochemically converted into cumene hydroperoxide (**2**), acetophenone (**3**), and cumyl alcohol (**4**). The main product was **3**, and the isolated yield was 34% under the optimum condition with the current density (*j*) of 2.1 mA/cm² and the amount of charge (*Q*) of 5.0 F (referring to mole of **1**) [2]. On the other hand, in the flow reactor, **4** was obtained as the main product with the GC–MS yield of 44% under the optimum condition: *j* of 0.25 mA/cm², *Q* of 1.0 F (referring to mole of **1**), and flow rate of 0.375 mL/min (**Table 1**). Obviously, the product selectivity in electro-conversion of cumene can be controlled by changing electrolysis modes. This is especially because an overoxidation of **4** into **3** was suppressed in flow electrolysis.

References

- A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew. Chem. Int. Ed., 57 (2018) 5594–5619.
- [2] M. Kitano, T. Saitoh, S. Nishiyama, Y. Einaga, T. Yamamoto, *Beilstein J. Org. Chem.*, 18 (2022) 1154–1158.

Ο

$ \bigcirc \longrightarrow \bigcirc $						
1		2		3	4	
Entry ^[a]	<i>j</i> (mA/cm²) ^[b]	Q (F) ^[c]	v (mL/min) ^[d]	Yields (%) ^[e]		Λ
1	2.0	1.0	3.0	30		17
2	2.0	3.0	1.0	14	14	10
3	2.0	5.0	0.6	3	7	6
4	3.0	1.0	4.5	1	3	3
5	1.0	1.0	1.5	trace	3	20
6	0.5	1.0	0.75	52	n.d.	42
7	0.25	1.0	0.375	36	n.d.	44

 Table 1. Screening of flow electrolysis conditions.

[a] Reaction conditions: BDD cathode and anode, 5 mM $\mathbf{1}$, 0.1 M Et₄NClO₄, MeCN (30 mL), undivided flow cell, rt. [b] Current density. [c] Amount of charge (referring to mole of $\mathbf{1}$). [d] Flow rate. [e] Determined by GC–MS. n.d.: not detected.