Ana Ameda^{1,2}

Entea Gjergji^{1,2}, Andy-Bruno-Darder³, Ruslan Alvarez³, Massimo Urban³, Nevila Broli^{1,2}, Majlinda Vasjari^{1,2}

¹Department of Chemistry, Faculty of Natural Science, University of Tirana, Bulevardi Zogu I, 1001 Tirane, Albania ²Nano-Alb, Academy of Sciences of Albania, Sheshi "Fan Noli", No 7, 1001 and Tirana, Albania ³ICN2, The Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, Spain.

amedaana8gmail.com

Abstract

Heavy metals (HMs) are considered crucial pollutants of the environment as they are very toxic, easy to be accumulated, and nondegradable in environment [1]. Therefore, the main goal of this study is to develop a graphene based sensor, suitable for the monitoring of Heavy Metals in environment. Herein, based on advantages of graphene oxide and metal nanoparticles, we used a single-step technique to produce reduced graphene oxide (rGO) conductive films integrating gold NPs. This method is based on the coreduction of graphene oxide and metal cations (Au³⁺) by CO₂ laser plotter [2]. The production procedure has been optimized, and the obtained nanomaterials are fully characterized; the hybrid nanosheets have been easily transferred onto lab-made screen-printed electrodes [2]. The electrochemical characterization of integrated Au@rGO- sensor was accomplished via Cyclic Voltammetry (CV) and Square Wave Anodic Stripping Voltammetry (SWASV) as typical techniques for HMs dedection [3]. A well-visible shift of the lead reoxidation peak was observed in the case of modified sensor Au@rGO-. Based on obtained results, this sensor can be used for determination of Heavy Metals in environment.

References

[1] S. Sawan, et al., Trends in Analytical Chemistry, (2020), 131 (2), 116014

- [2] A. Scroccarello, et al., ACS Sens. (2023), 8, 598-609
- [3] Q. Yang, et al., ACS EST Water (2021), 1, 2470-2476

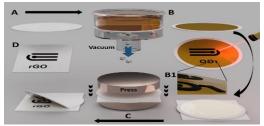


Figure 1: Schematic presentation of rGO-sensor

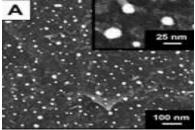
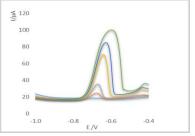



Figure 2: SEM of Au@rGO- films

Figure 3: Typical SWASVs of Pb²⁺ using Au@rGO- sensor