

Ultrafast Laser-Based Sample Preparation for Optimized FIB/SEM Workflows in High-Throughput Analysis

Tasgit, Oytun^{a*}, Keller, Julia^a

^a 3D-Micromac AG, Technologie-Campus 8, Chemnitz, 09126, Germany

With the increasing complexity of semiconductor devices, efficient and precise sample preparation has become essential for failure analysis, quality control, and advanced research and development. The microPREP® systems integrate ultrafast laser technology into the FIB/SEM workflow, enabling high-speed, athermal material ablation with micrometer-level accuracy. This approach significantly reduces preparation time from hours to minutes.

By employing ultrashort-pulse lasers, the system enables large-volume material removal with minimal thermal effects.¹ This capability is particularly beneficial for applications such as FIB trenching², atom probe tomography (APT) microtip fabrication³, and cross-sectioning of advanced semiconductor packages². Integration with xenon (Xe) plasma FIB-SEM systems establishes a hybrid workflow in which laser ablation performs bulk material removal, followed by high-precision FIB polishing for final refinement, thereby optimizing throughput.^{1, 2, 3, 4}

This laser-based methodology is particularly impactful in semiconductor manufacturing, where speed, repeatability, and accuracy are critical. Computer-aided design (CAD)-based targeting further enhances precision by enabling rapid access to specific regions of interest. Case studies, such as flip-chip package analysis² and atom probe tomography, demonstrate significant improvements in productivity and process control.

This study demonstrates that integrating femtosecond laser systems into semiconductor workflows transforms sample preparation and offers a scalable solution to meet the requirements of next-generation device analysis.

References

1. T. Höche, M. Krause, M. Ebert, U. Wagner, A Novel Laser Tool for High-Volume Sample Preparation, *Laser Technik Journal* 1/2015, 2015.
2. R. Blando, L. Hladík, J. Oboňa, T. Borůvka, M. Burán, M. Krause, B. Rottwinkel, S. Fuller, Pairing Laser Ablation and Xe Plasma FIB-SEM: An Approach for Precise End-Pointing in Large-Scale Physical Failure Analysis in the Semiconductor Industry, *ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis*, 2021.
3. J. Tang, O. Renk, M. Tkadletz, Site-specific femtosecond laser ablation: The pathway to high-throughput atom probe tomography characterization, *Materials Characterization*, Volume 219, 2025.
4. P. Denninger, P. Schweizer, E. Speecker, Characterization of extended defects in 2D materials using aperture-based dark-field STEM in SEM, *Micron* 186 (2024) 103703.

* corresponding author e-mail: tasgit@3d-micromac.com