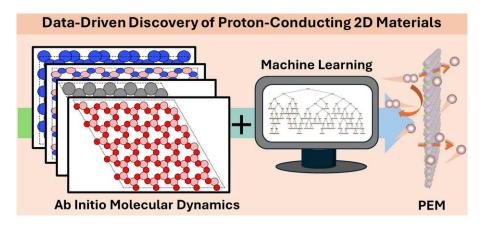
2D Materials for Clean Energy: From Molecular Design to Scalable Decarbonization Technologies

Lourdes F. Vega, Daniel Bahamon, Yuting Li, Seba Alareeqi, Maryam Khaleel

Research and Innovation Center on CO2 and Hydrogen (RICH Center) and Chemical and Petroleum Engineering Department. Research & Innovation Center for Graphene and 2D-Materials (RIC2D). Khalifa University, Abu Dhabi, UAE
Lourdes.vega@ku.ac.ae

Achieving net-zero emissions by 2050—a central objective of the Paris Agreement—requires deep decarbonization of the energy, transportation, and industrial sectors, alongside the rapid development of sustainable materials and technologies.


This presentation highlights how two-dimensional (2D) materials are emerging as enablers of the clean energy transition, focusing on two key areas: hydrogen technologies and carbon capture and utilization (CCUS). Examples from our recent research include graphene-based proton-conductive membranes for fuel cells [1,2] (see Figure 1), graphene oxide–MOF composites for CO₂ capture [3], and heteroatom-doped or nanoparticle-functionalized 2D materials for CO₂ conversion into fuels and chemicals [4]. The talk will demonstrate how computational modeling integrated with machine learning provides molecular-level insights that guide experimental optimization, accelerating the path from material discovery to practical deployment in clean energy systems [5].

This work is financed by the United Arab Emirates Presidential Court through RIC2D at Khalifa University under the RIC-2D-D001 project, as well as Khalifa University through RC2-2019-007, to the RICH Center.

References

- [1] Z.F. Wu et al., Nat. Commun. 14, 7756 (2023).
- [2] J. Tong et al., Nature 630, 619–624 (2024).
- [3] H Zhao, D Bahamon, M Khaleel, LF Vega, Chem. Eng. J. 449, 137884 (2022)
- [4] Y Li, D Bahamon, J Albero, N López, LF Vega, J. CO2 Utilization 80, 102692 (2024)
- [5] S. Alareegi et al., Nat. Commun. 16, 2639 (2025).

Figures

Figure 1: Schematic of the approach for searching proton-conducting 2D membranes for hydrogen applications combining computational modeling with machine learning.