Enhanced Photodetection in Facile Solution-Processed Fabrication of MoS₂-Perovskite Heterostructures

Mohammed Misbah Uddin, Marwa Abd-Ellah, Ahmed Abdelhady Khalifa University, Shakhbout Bin Sultan St - Hadbat Al Za`Faranah - Zone 1 - Abu Dhabi, UAE

100059690@ku.ac.ae

Abstract

Hybrid halide perovskites and transition metal dichalcogenides can be combined into heterostructures to overcome issues related to performance of perovskite photodetectors, such as low responsivity and high dark current.[1] We used N-methylformamide (NMF) as both the solvent to exfoliate bulk MoS_2 and as source of the methylammonium cations for the in-situ formation of the perovskite in the presence of exfoliated MoS_2 .[2] In the presence of MoS_2 , the perovskite crystals are larger in size, and the crystalline structure of the perovskite is less compressed with respect to the control perovskite. The resulting MoS_2 -MAPbBr₃ heterostructure films showed extremely low trap density (5.7 x 10^{10} cm $^{-3}$) when compared to reported values with better charge transfer, as evident from the $\sim 55\%$ photoluminescence quenching and enhanced photoresponsivity with reduced dark current in vertical photodetectors.

References

- [1] Y. Wang *et al.*, "Solution-Processed MoS2/Organolead Trihalide Perovskite Photodetectors," *Advanced Materials*, vol. 29, no. 4, p. 1603995, 2017, doi: 10.1002/adma.201603995.
- [2] J. Shamsi *et al.*, "N-Methylformamide as a Source of Methylammonium lons in the Synthesis of Lead Halide Perovskite Nanocrystals and Bulk Crystals," *ACS Energy Lett.*, vol. 1, no. 5, pp. 1042–1048, Nov. 2016, doi: 10.1021/acsenergylett.6b00521.

Figures

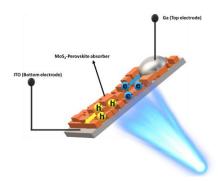
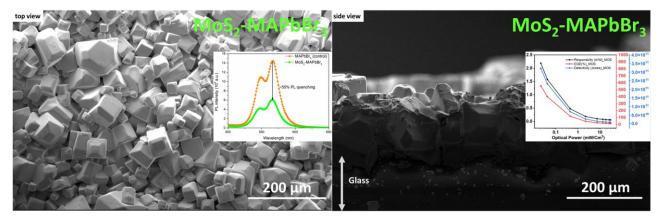



Figure 1: Pictorial view of the device architecture of the photodetector device structure based on MoS₂-MAPbBr₃.

Figure 2: SEM images of the MoS2-MAPbBr3 films, showing top view (left) and side view (right). The insets show 55% PL quenching of the MoS2-MAPbBr3 films in comparison to the control (left) and responsivity, EQE% and detectivity in terms of optical power output (right).