Tuning oxygen vacant sites and basicity of Ni based catalyst supported on graphene and their effect towards for CO₂ methanation

Aseel G. S. Hussien^{a,b}, Michalis A. Vasiliades^c, Inas Taha^d, Dalaver H. Anjum^d, Angelos M. Efstathiou^c, Yarjan Abdul Samad^e, Kyriaki Polychronopoulou^{a,b,*}

- ^aDepartment of Mechanical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- ^bCenter for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- ^cDepartment of Chemistry, Heterogeneous Catalysis Laboratory, University of Cyprus, 1 University Avenue, University Campus, 2109 Nicosia, Cyprus
- ^dDepartment of Physics, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- ^eDepartment of Aerospace Engineering, Khalifa University of Science & Technology, 127788, Abu Dhabi, United Arab Emirates

kyriaki.polychrono@ku.ac.ae

CO₂ methanation (CO_{2(g)} + 4H_{2(g)} \rightarrow CH_{4(g)} + 2H₂O_(g), \triangle H_{289K}=-165 kJ/mol) is an exothermic process that can be utilized to mitigate CO₂ emissions and tackle the catastrophic effects of global warming, whilst meeting the growing energy demands. Additionally, methane has higher volumetric energy content than H₂ and less hazardous. Hence, introducing the concept of Power to Gas (PtG) by hydrogenating CO₂ by using the H₂ produced minimizes the hazards associated with H₂ storage [1].

Ni-based catalysts have an exceptional methane selectivity and economic feasibility. However, the low-temperature reaction conditions of CO₂ methanation restricts the catalytic activity of Ni-based catalysts. Optimizing the preparation method of the catalysts to reduce the Ni particle size or to adjust the chemical state of the nickel species can enhance the catalytic performance of Ni-based catalysts during CO₂ methanation. Graphene is a 2D carbon material with advantageous intrinsic properties such as high thermal and chemical stability, and can promote CO₂ activation on the surface of the catalyst. Doped ceria (CeO₂) is known for its oxygen storage capacity (OSC) and redox property [1], which can enhance the performance and coke resistance of the catalyst. Whereas, improving the basicity of the surface of the catalyst by adding a basic metal oxide like MgO, is known to reduce the carbon formed during the reaction.

In this study, the performance of graphene-based supports promoted with 20wt.% MgO (via wetness impregnation) and CePrO (via coprecipitation) metal oxides then decorated with 10 wt.% Ni by wetness impregnation towards CO₂ methanation. Namely, the commercial grade 3 graphene (GR3) produced by LOOP 10 unit (Levidian plasma) and Nanografen (GRP); which is synthesized via pyrolysis. Moreover, a reference 10 wt.% Ni/GR3 catalyst was synthesized via wetness impregnation. XRD and Raman confirmed the formation of cubic fluorite phase CeO2 in the case of 10% Ni/ CePrO-GR3 and 10% Ni/ CePrO-GRP. NiO peaks have also been detected in all XRD patterns collected. H2-TPR and CO2-TPD were utilized to investigate the reducibility and basicity of the catalysts, respectively. The catalytic performance of the catalysts towards CO₂ methanation (CO₂:H₂=1:4 and WHSV=25,000 h⁻¹) was evaluated as a function of temperature (T= 250 °C, 300 °C, 350 °C). The 10% Ni/ CePrO-GR3 catalyst showed exceptional CO₂ conversion as well as selectivity compared to the other carbon-based catalysts used for CO₂ methanation reaction. Whereas, the poor graphene structure of 10% Ni/ CePrO-GRP and the high level of impurities in the pyrolysis type of graphene (e.g. Fe, Si) as those identified in the GRP graphene-like material (SEM/EDX results). Graphene has the ability to donate electrons [1], which is believed to enhance the metal-support interaction which prevents sintering and stabilizes the catalyst and thus prevents its deactivation. The stability tests performed on the catalysts showed that 10% Ni/ CePrO-GR3 maintained the c.a. 93% CO₂ conversion and no CO produced (excellent selectivity) throughout the 100h.

References