Graphene and 2D Materials Mechanics: From Intrinsic Limits to Composites Reality

Costas Galiotis

Department of Chemical Engineering, University of Patras, 26504 Patras, Greece and Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, 26504 Platani, Patras, Greece

Contact: galiotis@chemeng.upatras.gr or c.galiotis@iceht.forth.gr

Spanning nearly two decades since the first mechanical tests on free-standing monolayers, the mechanics of two-dimensional (2D) materials has advanced from discovery to design. Initial nano-indentation studies with atomic force microscopy provided first benchmarks of elastic and strength values, while recent methodology now enables direct uniaxial tensile testing of atomically thin crystals. Graphene remains the in-plane reference ($E \approx 1$ TPa; σ max ≈ 100 GPa [1]), fracturing in a brittle Griffith-type manner with K_{IC} in the 3–4.4 MPa \sqrt{m} range [2, 3]. Hexagonal BN ($E \approx 0.86$ TPa; σ max ≈ 70 GPa [4]; $K_{IC} \approx 8.7$ MPa \sqrt{m} [5]) and transition-metal dichalcogenides (MoS₂, WS₂, $E \approx 0.27$ –0.30 TPa; σ max ≈ 20 –50 GPa [6]) broaden this space, offering lower inplane strength but higher flexural rigidity. Importantly, large-scale chemical vapour deposition is now yielding materials whose properties approach those of exfoliated monolayers, paving the way for systematic integration into composites.

When translated into polymer matrices, however, the decisive factors are not the headline values of the isolated monolayers but the mechanics of reinforcement. Effective load transfer requires flakes with sufficient aspect ratio relative to a critical length, strong interfacial shear and interphase interactions, and controlled wrinkle morphology and orientation [7,8]. Raman-based strain mapping combined with shear-lag and Halpin—Tsai analysis demonstrates that substantial stiffness and strength gains are possible at ≤1 wt% loading [9]. At the same time, toughness improvements arise from fracture processes—crack deflection and pinning, flake pull-out and bridging—that reflect, but also transcend, the intrinsic fracture response of the monolayers.

Ultimately, the design of 2D-material composites is dictated less by the intrinsic limits of perfect crystals than by the mechanics of stress transfer and fracture within the composite—where reinforcement efficacy and toughness requirements set the true performance envelope.

References

- [1] C. Lee, X. Wei, J.W. Kysar, J. Hone, Science, 321 (2008) 385-388.
- [2] P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P.E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, et al. Nature communications, 5 (2014) 3782.
- [3] S. Jaddi, M.W. Malik, B. Wang, N.M. Pugno, Y. Zeng, M. Coulombier, J.-P. Raskin, T. Pardoen et al, Nature communications, 15 (2024) 5863.
- [4] A. Falin, Q. Cai, E.J. Santos, D. Scullion, D. Qian, R. Zhang, Z. Yang, S. Huang, K. Watanabe, T. Taniguchi et al., Nature communications, 8 (2017) 15815.
- [5] Y. Yang, Z. Song, G. Lu, Q. Zhang, B. Zhang, B. Ni, C. Wang, X. Li, L. Gu, X. Xie et al., Nature, 594 (2021) 57-61.
- [6] K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Fu, S. Lee, J. Zhou, S. Tongay et al., Nano Letters, 14 (2014) 5097-5103.
- [7] G. Anagnostopoulos, C. Androulidakis, E.N. Koukaras, G. Tsoukleri, I. Polyzos, J. Parthenios, K. Papagelis, C. Galiotis, ACS Applied Materials and Interfaces, 7(7) (2015) 4216-4223.
- [8] C. Androulidakis, D. Sourlantzis, E. Koukaras, A. Manikas, C. Galiotis, Nanoscale Advances, 1 (2019) 4972-4980.
- [9] C. Pavlou, M.G. Pastore Carbone, A.C. Manikas, G. Trakakis, C. Koral, G. Papari, A. Andreone, C. Galiotis, Nature Communications, 12 (2021) 4655.