When MXenes Meet Photon-Counting Spectral CT: Quantitative Imaging of Ti-Based 2D Nanomaterials

Abderaouf Behouch (1,2), Nabil Maalej (1), Tarek Lemaoui (3), Faisal Shahzad (3), Mohamed Seghier (4), Aamir Younis Raja (1).

- 1- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, UAE
- 2-Department of Physic,s Ferhat Abbas University, Setif 1, Algeria
- 3-Research & Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
- 4- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE

Abderaouf.behouch@ku.ac.ae

MXenes are an emergent family of 2D transition-metal carbides and nitrides whose high electron density, tunable surface chemistry, and colloidal stability make them attractive candidates for nanomedicine and theranostics. In parallel, spectral photon-counting spectral CT (SPCCT) has matured to provide energy-resolved X-ray detection and material-specific image reconstruction. Here, we bring these advances together by synthesizing titanium-based MXene nanomaterials and demonstrating their sensitive detection and quantitative imaging using PCCT. Aqueous dispersions of Ti-based MXenes (Ti₃C₂T_x) were prepared and characterized for size, composition, and stability, then imaged in phantoms across multiple energy thresholds spanning the diagnostic X-ray spectrum, with Ti₃C₂T_x scanned at a series of known concentrations. Ti-prior spectral quantification approach that leverages energy-binned attenuation prior knowledge was used to do material decomposition to estimate MXene concentration maps. The resulting images show robust MXene contrast across energy bins, clear separability, and accurate concentration estimates over a practical range relevant to nano-theranostic dosing. Together, these findings establish PCCT as a powerful platform for label-free, element-aware readouts of Ti-based MXenes, enabling quantitative tracking, dose optimization, and therapy monitoring. This proof-of-concept positions MXene—SPCCT imaging as a versatile foundation for next-generation nanomedicine workflows that integrate delivery, diagnosis, and response assessment.

Keywords: MXene; titanium-based nanomaterials; spectral photon-counting spectral CT; material decomposition; quantitative imaging; theranostics; nanomedicine.

References

- [1] [1] Walsh, M. F., Opie, A. M. T., Ronaldson, J. P., Doesburg, R. M. N., Nik, S. J., Mohr, J. L., ... & Butler, P. H. (2011). First CT using Medipix3 and the MARS-CT-3 spectral scanner. Journal of Instrumentation, 6(01), C01095.
- [2] A Soltan Mohammadlou, B., Ippolito, S., FitzPatrick, J., Upadhyay, P., Burnett, T. L., & Gogotsi, Y. (2025). Characterization of MXene-Based Materials by X-Ray Computed Tomography. Small methods, 2500262.

Figures

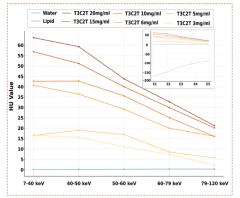


Figure 1: Spectral Curve Analysis Across Energy Windows in SPCCT of Mexene