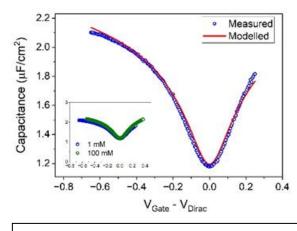
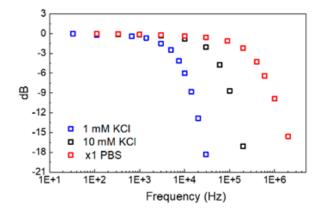
Dynamics of the Electric Double-Layer in Electrolyte Gated Graphene FETs

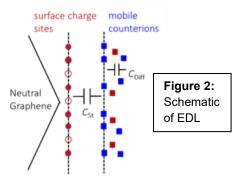
T J Badcock, J Kuleshova, A Nikolaenko, M Tyler, V Curto, N Conway, J Tingay 7-8 West Newlands, Somersham, Cambridgeshire, England, PE28 3EB. UK


t.badcock@paragraf.com

The electric double-layer (EDL) of graphene FETs is studied in the time/frequency domain over electrolyte concentrations (c_{ion}) ranging from (1 < c_{ion} < 150 mM) (Fig.1). From impedance data the effective gate capacitance is modelled, using the graphene quantum capacitance (including a residual charge < 5×10^{11} cm⁻²) in series with a bias-independent EDL capacitance (C_{EDL}), itself a series combination of Stern (C_{st}) and diffuse layer (C_{diff}) capacitances (Fig.2). A core tenet of FET biosensor principles is the notion that the Debye 'screening length', determined by c_{ion} , also controls C_{EDL} and therefore the potentiometric sensitivity of the device. In contrast to this assumption, our measured data is consistent with a model in which C_{EDL} is independent of c_{ion} , suggesting that the inner 'Stern' layer of the EDL is controlling the charge coupling of the channel (Fig.2) [1]. The electrical bandwidth of the FETs is then studied via a single-source mixing technique [2] (Fig.3), again as a function of c_{ion} (>1 mM). It is seen that the -3dB cut-off frequency of the FET transconductance can be described by a single-pole RC filter fit in which only the solution + graphene resistance is varying (C_{EDL} is constant). The transient dynamics of the EDL are examined via electrically pulsed gating, revealing that the time required to reach a steady-state current in the channel increases as c_{ion} reduces, ranging from ~10 μ s (x1 PBS=150 mM) to ~1 ms in de-ionised water, timescales that are complementary to the cut-off frequencies (Fig.4).


References

- [1] Dankerl et al. Phys. Rev. Lett. 106, 196103 (2011)
- [2] Kulkarni et al. Acc. Chem. Res 2016, 49, 11, 2578
- [3] Bazant et al. Phys. Rev. E 70, 021506 (2004)


Figures

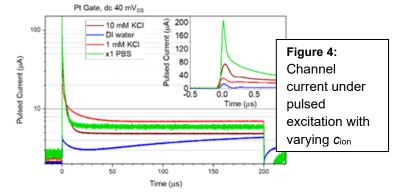


Figure 1: Gate capacitance as a function of c_{ion} . The form of the C-V curve does not depend on c_{ion} (inset)

Figure 3: FET transconductance vs mixing frequency for various *c*_{ion}

