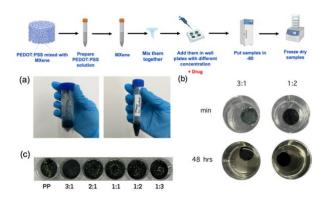
Conducting Polymer Scaffolds Based On PEDOT:PSS/MXene Composites For Drug Delivery In Wound Healing Applications

Khulood Alshehhi¹, Deema Islayem², Charalampos Pitsalidis^{1,2}

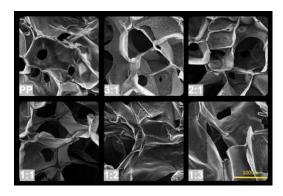
¹Department of Physics, Khalifa University, Abu Dhabi, UAE

100062578@ku.ac.ae, charalampos.pitsalidis@ku.ac.ae

Abstract


This study presents the development of porous composite scaffolds composed of the conducting polymer PEDOT:PSS and the 2D material MXene, engineered for controlled drug delivery and antibacterial applications. Bacterial infections, especially those complicated by rising antibiotic resistance, pose a global health challenge, highlighting the need for materials that can deliver drugs while offering antibacterial properties. Conducting polymers (CPs) such as PEDOT:PSS exhibit electrical conductivity, biocompatibility, and the ability to form 3D biomimetic structures [1,2].

MXene, a two-dimensional material has emerged as a powerful candidate for biomedical applications. MXenes exhibit high conductivity, hydrophilicity, and antibacterial properties, including the ability to disrupt bacterial membranes and generate reactive oxygen species [3]. The scaffolds, fabricated via a freeze-drying method, were designed to investigate the relationship between composition and performance, particularly for controlled drug release and antibacterial efficacy. Tetracycline hydrochloride (TCH) was incorporated into the scaffolds as a model drug. Structural and electrochemical analyses revealed that increasing MXene content resulted in larger, more irregular pores and reduced conductivity, while PEDOT:PSS-dominated scaffolds exhibited smaller pores and enhanced conductivity. Drug release kinetics demonstrated slower, sustained release in scaffolds with higher MXene content, attributed to strong drug-material interactions. Antibacterial testing against Escherichia coli and Pseudomonas aeruginosa highlighted superior efficacy for MXene-rich scaffolds. These findings establish PEDOT:PSS/MXene composites as versatile platforms for drug delivery and antibacterial applications.


References

- [1] C. Pitsalidis and R. Owens, "Conducting polymer scaffold device as a tool to mimic and monitor 3D tissue microenvironment for use in organ-on-chip platforms (Conference Presentation)," in *Organic and Hybrid Sensors and Bioelectronics XV*, San Diego, United States: SPIE, Oct. 2022.
- [2] R. A. Nasser, S. S. Arya, K. H. Alshehhi, J. C. M. Teo, and C. Pitsalidis, "Conducting polymer scaffolds: a new frontier in bioelectronics and bioengineering," *Trends in Biotechnology*, Jan. 2024.
- [3] U. K. Rout, C. R. Sahoo, and D. Bhattacharya, "MXene-Based Materials for Antibacterial Activity," in *MXenes*, 1st ed., Boca Raton: CRC Press, 2024.

Figures

Figure 1: (Top) Preparation and characterization of PEDOT:PSS/MXene scaffolds. (a) PEDOT:PSS and MXene solutions. (b) Drug release at 0 and 48 h. (c) Drug loaded scaffolds with varying compositions.

Figure 2: Bacterial growth inhibition of E. coli on different scaffold composites.

²Department of Biomedical Engineering, Khalifa University, Abu Dhabi, UAE