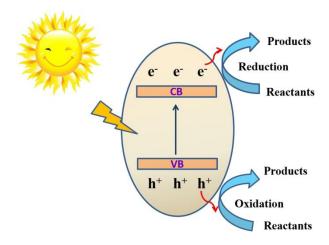
Synthesis and structural characterization of hybrid nanocomposites for sustainable photocatalytic applications

<u>Ebrahim M. Khair Alosta</u>, Rambabu Krishnamoorthy, Emad Alhseinat and Chin Kui Cheng

Department of Chemical and Petroleum Engineering, Khalifa University, Abu Dhabi, United Arab Emirates


100062603@ku.ac.ae

Emerging contaminants in wastewater represent a critical environmental challenge, demanding cost-effective and sustainable treatment strategies. Hybrid nanocomposites have recently attracted interest due to their tunable structural and electronic properties for photocatalytic application [1]. In this study, two hybrid nanocomposite systems, *viz.* ZnFe₂O₄/MnCO₃ and Zn-doped MnCO₃ were synthesized using hydrothermal and calcination techniques. The materials were systematically characterized to their elemental composition, crystallinity, and morphology. Scanning electron microscopy (SEM) images revealed distinct particle morphologies and surface textures. ZnFe₂O₄/MnCO₃ exhibited sharp-edged angular particles, while Zn-doped MnCO₃ developed hierarchical nanosheets. Energy-dispersive spectroscopy (EDS) confirmed Zn surface enrichment in calcined Zn–MnCO₃ (71.9 wt%) and stable Fe incorporation in ZnFe₂O₄ composites (44 wt%). X-ray diffraction (XRD) identified crystalline phases of MnCO₃ (planes 012, 104, 110, 116), Zn₅(CO₃)₂(OH)₆ (221), and ZnFe₂O₄ (311) [2, 3]. The Zn-doped MnCO₃ system, calcined at 400 °C, showed improved crystallinity and phase stability. These findings demonstrate the ability to tailor hybrid nanocomposite structures through synthesis conditions, providing a foundation for future photocatalytic activity studies under simulated solar irradiation. This work contributes to the development of sustainable photocatalysts for environmental remediation and supports climate action goals through innovative material design.

References

- [1] S. Porcu, F. Secci, and P. C. Ricci, "Advances in Hybrid Composites for Photocatalytic Applications: A Review," Molecules, vol. 27, no. 20, p. 6828, 2022. [Online]. Available: https://www.mdpi.com/1420-3049/27/20/6828.
- [2] H. Liang et al., "Zn-doped MnCO3/CS composite photocatalyst for visible-light-driven decomposition of organic pollutants," Molecules, vol. 29, no. 5, p. 1094, 2024.
- [3] Z. M. Abdulhamid et al., "Synthesis, characterization, and preliminary insights of ZnFe2O4 nanoparticles into potential applications, with a focus on gas sensing," Scientific Reports, vol. 13, no. 1, p. 19705, 2023/11/11 2023, doi: 10.1038/s41598-023-46960-w.

Figures

Figure 1: Schematic representation of photocatalysis: sunlight excites electrons (e⁻) from the valence band (VB) to the conduction band (CB).