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Abstract

With the growing demand for sustainable energy, hydrogen has gained significant attention for its potential as a
clean and efficient energy carrier. Proton Exchange Membrane (PEM) Fuel Cells (FCs) represent one of the most
advanced and promising options among current hydrogen utilization technologies. Conventionally, PEMFCs
employ polymer-based membranes, with Nafion being the most widely used. However, these membranes suffer
from considerable performance degradation when exposed to high temperatures and low relative humidity. In
addition, PEMFCs performance heavily relies on platinum-based catalysts, which are expensive and scarce.
These challenges underscore the urgent need to explore novel PEM materials [1, 2]. In this context, 2D materials
have emerged as leading contenders, particularly following the breakthrough by Geim’s research group, which
demonstrated that graphene, though impermeable to gases, exhibits proton conductivity [3].

We will present results concerning the use of Density Functional Theory (DFT) to explore the potential of
Transition Metal Dichalcogenides (TMDs) as candidate PEM materials. Proton, lithium, and helium permeation
energy barriers are calculated for both pristine and defect-engineered TMDs. In addition, the electronic properties
of these materials are examined using charge density plots, charge density difference maps, and Bader charge
analysis to understand and explain the observed trends in energy barriers. Figures 1. a, b, and c present an
example of these analyses applied to InSe.
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Figure 1.a Energy Profile of H*, He and
Li* vs Distance from the center of the
monolayer.

Figure 1.b Charge density Plot of InSe averaged
along the perpendicular direction. The contour
line in the charge density plots represents 0.05
e/A3

Figure 1.c Charge density difference isosurface
plot showing the electronic redistribution upon
embedding a proton at the center of a
hexagonal ring in a 2D InSe monolayer. Yellow
and cyan isosurfaces represent regions of
electron accumulation and depletion,
respectively, plotted at an isovalue of +0.0008
e/A3




