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Transparent films with high optical clarity and mechanical strength are essential for applications in
optoelectronics, flexible substrates, and coatings. Traditional materials like ITO and PET offer transparency but
suffer from high cost, brittleness, or limited sustainability’-*. As a result, there is increasing demand for
alternative materials that address these limitations without compromising performance.

Graphene and its derivatives, particularly graphene oxide (GO) and reduced graphene oxide (rGO), have
emerged as promising candidates due to their exceptional optical, electrical, and mechanical properties®. GO’s
hydrophilic nature, conferred by oxygen-containing functional groups, allows for easy dispersion but
compromises transparency. Upon thermal or chemical reduction, GO regains partial conductivity and
transparency through restoration of its sp? carbon network®. However, the resulting rGO often suffers from
aggregation and optical losses due to residual defects and strong inter-sheet interactions™2.

To address this, controlled reduction techniques have been explored, achieving high transmittance while
balancing conductivity and structure integrity®-"". In composite systems, integrating rGO with polymers or
nanoparticles can enhance mechanical or thermal performance, yet often at the cost of optical clarity due to
increased scattering and phase separation'>-'®. The dispersion quality and choice of matrix become pivotal in
defining the optical performance of such composites™”.

In this work, we present a novel approach for synthesizing transparent GO-based composites using laponite as
the host matrix. Laponite, a synthetic smectite clay (Na*.,[(SigMgs.sLio.3)020(OH).4] 0.7), is selected for its optical
transparency, colloidal stability, and chemical compatibility with GO™. Initially, GO is dispersed in a laponite sol
to ensure uniform distribution and minimize aggregation. The resulting GO-laponite film is then thermally
reduced under controlled conditions, facilitating in-situ conversion to rGO. This strategy enhances the interaction
between the matrix and rGO sheets, yielding a homogeneous, defect-minimized composite film with enhanced
light transmittance and mechanical stability.

Our results demonstrate that this process achieves superior optical performance compared to composites
formed with pre-reduced rGO. By leveraging the synergistic properties of GO, rGO, and laponite, the developed
films exhibit excellent transparency and structural integrity, making them ideal candidates for next-generation
flexible optoelectronic devices and coatings.
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Figure 1: Schematic illustration of the preparation of Laponite-rGO nanocomposites with thermal treatment, and b) picture
of the films before and after thermal treatment at different concentrations of GO.
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Figure 2: Raman Spectrum of a) LAP-GO and b) LAP-rGO films at different GO concentrations of GO.




