Chemical Sensing with Graphene Liquid-Gate Transistors

Pedro Alpuim^{1,2}, Mafalda Abrantes^{1,2}, Tiago Pereira¹, Telma Domingues^{1,2}, Bruno M. Costa³, João Mouro¹, Luís Jacinto⁴, Jérôme Borme¹

¹International Iberian Nanotechnology Laboratory, Braga, Portugal

²Centro de Física das Universidades do Minho e Porto, Universidade do Minho, Braga, Portugal

³Instituto de Investigação em Ciências da Vida e da Saúde, Escola de Medicina, Universidade do Minho, Braga, Portugal

⁴Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal

pedro.alpuim@inl.int

Abstract

Biosensing with graphene transistors, with their promising potential, is a significant area of research. Their inherent 2D nature, high carrier field-effect mobility and ambipolar transport, chemical inertness and robustness, and the possibility of surface functionalization make them a compelling choice. The sensing principle – local gating by analyte molecules whenever they attach to the graphene channel – modulates its Fermi energy, causing a shift in the transistor transfer curve, typically detected by measuring the point of minimum conductance [1]. I will show the attomolar detection of single-stranded DNA containing a mutation occurring in brain tumor cells and the results on neurotransmitter detection using a short-strand dopamine-specific DNA aptamer [2]. I'll present DC and AC configurations for the graphene chip interrogation and signal acquisition. Finally, liquid-gate transistors often suffer from electrical instability due to the interaction of their charge carriers with the defects in the surrounding insulator layers [3]. Here, we present a complete model for the observed transfer curve drift based on the electron capture and emission rates from and to the SiO_x defect bands. Once understood, this effect can be controlled, effectively removing the drift in most practical situations.

References

- [1] A. Purwidyantri et al., ACS Sens. 8 (2) (2023) 640-654
- [2] M. Abrantes et al., Journal of Nanobiotechnology (2022) 20:495
- [3] T. Knobloch et al., Nature Electronics, 5 (2022) 356-366

Figures

