lonogel-based electrodes for non-flammable high-temperature operating electrochemical double layer capacitors

Alberto Morenghi¹

Agnese Gamberini¹, Tobias Burton², Alix Ladam², Ahmad Bagheri¹, Matteo Abruzzese¹, Hossein Beydaghi¹, Valentina Mastronardi¹, Elena Calcagno¹, Samaneh Vaez^{1,3}, Alberto Morenghi¹, Teresa Gatti³, Anais Falgayrat², Sebastiano Bellani¹, Sebastien Fantini¹, and Francesco Bonaccorso^{1,4}

- 1 Bedimensional S.p.A., Lungotorrente secca 30R, 16163 Genova, Italy.
- 2 Solvionic, 11 Chemin des Silos, Toulouse, 31100 France.
- 3 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- 4 Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, 16163 Genova, Italy.

a.morenghi@bedimensional.it

Electrochemical double-layer capacitors (EDLCs) are a type of supercapacitors (SCs), which have garnered significant attention as suitable energy storage solution for several applications ranging from automotive, to smart grids, wind turbines, and power electronics [1]. However, their limited energy density (E_s) and narrow operating temperature range pose challenges for wider adoption, especially in harsh environments [2, 3]. This study introduces a novel approach for the fabrication of the SC electrodes using ionogels, improving the overall performances and overcoming the temperature limitations of conventional SCs. This study presents a novel strategy utilizing ionogel-based electrodes to improve the energy density of EDLCs, while expanding their operational temperature range. The ionogel electrodes were fabricated by formulating electrode slurries with an ionic liquid (1-ethil-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI)) and water as the liquid medium, avoiding the need for organic solvents and eliminating expensive drying procedures. The ionogel-electrode approach facilitates efficient contact between the porous electrode surface and the electrolyte, preventing gas entrapment in the pores, ensuring uniform wetting, and eliminating the need for time-consuming pre-conditioning steps. This simplifies industrial assembly processes significantly [4]. Ionogel-electrodes exhibited remarkable rate capability and capacity retention (~92 % over 100 h of floating time) due to the extended electrolyte penetration into the electrode pores, hardly achievable with conventional electrodes. At a power density of 12.96 kW kg⁻¹, the ionogel-based EDLC retains 33 Wh kg⁻¹ which is ~83 % of the energy density measured at a low power of 0.14 kW kg⁻¹ (40 Wh kg⁻¹). In contrast, conventional EDLCs retain 65 % of its energy density in the same specific power range. Moreover, the operating temperature window is enlarged thanks to the thermal stability of EMIMFSI-based electrolyte which enables to retain ~24 Wh kg⁻¹ still at 100 °C while conventional SC are limited under 65 °C. Overall, this research presents a promising pathway for advancing EDLC technology through innovative electrode fabrication methods and IL-based electrolytes.

References

- [1] F. Bonaccorso et al., Science, 347.6217 (2015) 1246501
- [2] M. Eredia, et al., APL Mater., 10.10 (2022) 101102.
- [3] A. Bagheri, et al., ACS Nano, 16.10 (2022) 16426–16442.
- [4] R. Lin, et al., Patent WO 2020/260444 A1 (2022).

Figures

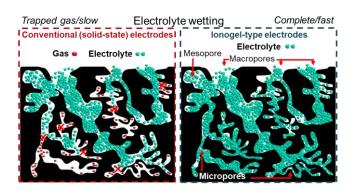


Figure 1. Sketch of the electrolyte wetting processes for conventional (solid-state) and ionogel-type electrodes.

This project received founding from the European Union's GREENCAP Horizon Europe research and innovation program under Grant Agreement No.101091572 and 2D-PRINTABLE Horizon Europe research and innovation program under Grant Agreement No.694101.