Novel Heterostructured Holey Graphene-CoTiO₃/TiO₂ Nanocomposite Enabled Photocatalytic Mixed Matrix Membranes for Antibiotics Removal

Mahendra Kumar^{1,2} Aya Fadl Aboukhater^{1,2}, Hassan A. Arafat¹ and Shadi W. Hasan^{1,2} 1Research and Innovation Center in Graphene and 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, UAE ²Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, UAE

mahendra.kumar@ku.ac.ae

Discharging hospital wastewater without prior treatment is responsible for potentially transporting antibiotics-laden wastewater into water resources, which poses a significant threat to human health and the ecosystem [1,2]. To overcome this problem, photocatalysis and membrane filtration-enabled photocatalytic membrane reactors (PMRs) have emerged as a potential tool to remediate hospital wastewater and antibiotics contaminated water resources [3,4]. High photodegradation efficiency photocatalysts and advanced membranes are needed to develop photocatalytic membrane reactors. In this study, HGN-CoTiO₃/TiO₂ nanocomposites are first produced by integrating CoTiO₃/TiO₂ with 2D holey graphene (HGN), and sophisticated instrumental data validate the formation of HGN-CoTiO₃/TiO₂ nanocomposites. HGN-CoTiO₃/TiO₂ nanocomposites are proficient in the photocatalytic degradation of antibiotics aqueous solution over a short period of exposure to light radiation. The mixed matrix membranes (MMMs) with different loading of HGN-CoTiO₃/TiO₂ are also fabricated from HGN-CoTiO₃/TiO₂, PVP, and PVDF via the nonsolvent-induced phase separation method. All the membranes demonstrated typical asymmetric porous structures with a compact skin layer and porous sublayer with finger-like pores. The pure water flux, antifouling, and photocatalytic degradation efficiency are tunable upon varying the loading content of HGN-CoTiO3/TiO2 within the matrix of MMMs. The maximum pure water flux is observed for 5 wt.% HGN-CoTiO₃ incorporated membrane while the best antifouling and antibiotics photodegradation abilities are attained for 15 wt.% HGN-CoTiO₃/TiO₂ loaded membrane used in dead-end and vacuum filtration under direct exposure to light radiation. The integrated adsorption and photocatalytic membrane reactor can be manufactured using HGN-CoTiO₃/TiO₂ and MMMs for hospital wastewater treatment.

References

- [2] D. Kadadou, S. W. Hasan J. Environ. Chem. Eng. 12 (2024) 112787
- [3] J. Zhang, Y. Miao, Y. Huo, H. Li, PhotoMat. 2023, 1-21.

[4] C.J. Wu, I.V. Maggay, C.H. Chiang, W. Chen, Y. Chang, C. Hu, A. Venault, Chem. Eng. J. 451 (2023) 138990.

Figures

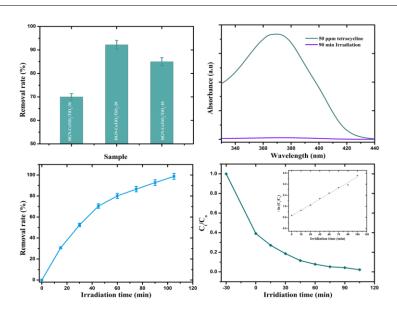


Figure 1: Photocatalytic performance of HGN-CoTiO₃/TiO₂ nanocomposite in degradation of antibiotic solution.

^[1] Haque et al., Chem. Eng. J. 498 (2024) 155372.