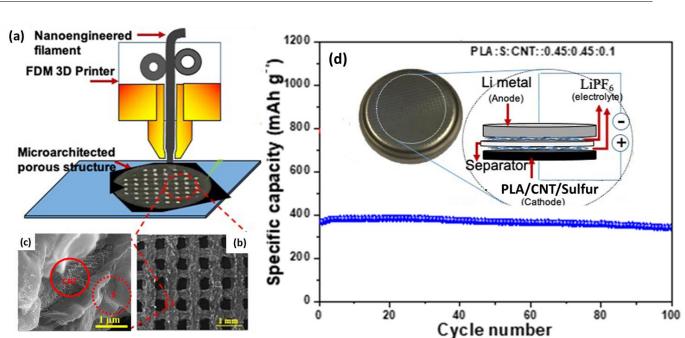
3D printing functional CNT-modulated nanoporous membranes for Energy Applications


Vinay Gupta, Kumar Shanmugam

Department of Physics, Khalifa University, Abu Dhabi, UAE James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK

vinay.gupta@ku.ac.ae

A self-standing 3D-printed PLA/sulfur/CNT cathode with high sulfur loading based on a biodegradable lowcost commercial polylectic acid (PLA) as the binding was fabricated via a facile robocasting 3D printing process (Figure 1a). The PLA/sulfur/CNT cathodes with different CNT loadings (3, 5, 7, and 10 wt%), interconnected porosities (10%, 30%, 50%, and 70%) and thicknesses (100, 200 and 300 µm) were 3D printed by utilizing in-house nanoengineered filaments Figure 1b). A nanoporous network of CNTs is developed (Figure 1c). Coin cells were fabricated (inset of Figure 1d) and their electrochemical performance is analyzed. The 3D-printed sulfur/CNT cathode shows excellent electrochemical performance in terms of capacity, cycling stability, and rate retention by facilitating Li+/e- transport at the macro-, micro-, and nanoscale in Li-S batteries. Meanwhile, the areal loading of the sulfur/carbon cathode can be easily controlled by the number of stacking layers during 3D printing process. The Li-S batteries assembled with the 3D-printed sulfur/CNT cathodes with a sulfur-loading of 6 mg cm^{-2} deliver an initial capacity of 1096 mA h g⁻¹ (100 µm thick) and high capacity retentions of % within 100 cycles at 0.5 C (Figure 1d). Moreover, cathodes with sulfurloadings of 11 mg cm-2 (200 µm thick) and 17 mg cm⁻² (300 µm thick) show lower initial specific discharge capacities of 810 mA h g⁻¹ and 542 mA h g⁻¹ due to increased thickness. However, the areal capacity of 17 mg cm⁻² (300 μ m thick), 11 mg cm⁻² (200 μ m thick), and 11 mg cm⁻² (200 μ m thick) show areal capacity (at areal current density) of 9.2 (2.84 mAcm⁻²), 8.91(1.84 mAcm⁻²), and 6.5 mAh cm⁻² (1.0 mAcm⁻²), respectively.

References

[1] V. Gupta et al, Journal of Power Sources, 494 (2021) 229625.

Figures

Figure 1: (a) Fabrication of PLA/S/CNT nanocomposite involving solvent casting, filament extrusion, and 3D printing. (b) A 3D printed PLA/S/CNT cellular nanocomposite with 10wt.% CNT loading (100 μ m). (c) SEM images of a 3D printed PLA/S/CNT cellular nanocomposites with different 10% CNT loading. (d) Cyclic stability of a 3D printed PLA/S/CNT nanocomposite electrode at 0.5C rate (inset shows the schematics of the coin cell).