Assessment of Nb₄C₃ MXene Single-Cell Skin Interactions and Irritation Evaluation Using a Non-Animal Model: A Safe Material for Cutaneous Applications

Laura Fusco,^{1,2} Benjamin Chacon², Erfan Rezvani Ghomi², Divij Matthew,³ Beatriz Estrada-Hernaez,⁴ Linda Giro¹, Roberta Cagliani,¹ Kara Spiller⁴, Flavia Vitale⁵, Yury Gogotsi², Lucia Gemma Delogu^{1,6,*}

¹Department of Biomedical Sciences, University of Padua, Padua, Italy

²A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA

³Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA ⁴School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA

⁵Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA

⁶Department of Biological Sciences, Khalifa University, Abu Dhabi, UAE

Laura.fusco@unipd.it

Abstract

Transition metal carbides, nitrides, and carbonitrides (MXenes) are emerging as promising candidates for a growing list of biomedical applications [1-5], including skin-related uses such as artificial skin, wound healing dressings, and skin sensors. However, there is limited data available regarding the potential skin toxicity of newly synthesized MXenes such as Nb₄C₃.

Here, we investigated the interactions of Nb₄C₃ MXene with human skin cells, utilizing both immortalized HaCaT cells and primary normal human epidermal keratinocytes (NHEK). To this end, we applied LINKED, our recently proposed label-free single-cell detection strategy based on single-cell mass cytometry by time-of-flight (CyTOF) [1], enabling nanomaterial detection and simultaneous measurement of multiple cell markers. We detected Nb₄C₃ in the ⁹³Nb channel and demonstrated its ability to be internalized by skin cells and its biocompatibility on the two skin cell models used, regardless of the extent of interactions. Our analysis detected Nb₄C₃ in the ⁹³Nb channel, demonstrating its ability to be internalized by skin cells and confirming its biocompatibility across both skin cell models, regardless of the extent of interactions. Additionally, we employed reconstructed human epidermis tissue models (EpiDerm, EPI200) to evaluate potential irritation effects.

Our findings demonstrate that Nb_4C_3 exhibits favorable uptake and maintains high cell viability across both cell types, while irritation assessments using the EpiSkin model indicated no adverse reactions. These results suggest that Nb_4C_3 is a safe material with promising implications for cutaneous applications, supporting its potential use in dermatological products and therapies.

Acknowledgements

Laura Fusco acknowledges the financial support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101029140 (SEE). This project has received funding from the European Union's Horizon Europe MSCA Staff Exchanges 2021 under Marie Sklodowska-Curie grant agreement no. 101086184 (MX-MAP).

References

- [1] L. Fusco et al. Immune Profiling and Multiplexed Label-Free Detection of 2D MXenes by Mass Cytometry and High-Dimensional Imaging. *Advanced Materials*, 2022, 2205154.
- [2] L. Fusco et al. V₄C₃ MXene immune profiling and modulation of T cell-dendritic cell function and interaction, *Small Methods*,2023, 2300197.
- [3] A. Vahidmohammadi et al. The world of two-dimensional carbides and nitrides (MXenes). *Science*, 2021, 372.
- [4] Y Gogotsi. & B Anasori. The Rise of MXenes. ACS Nano, 2019, 13, 8491.
- [5] L Fusco. et al. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. *Theranostics*, 2020, 10, 5435.