Ferroionic 2D Material Integration for Enhanced Electro-Optic Functionality in Silicon Photonic Circuits

Ghada Dushaq^{1*}, Solomon Serunjogi¹, Srinivasa R. Tamalampudi¹, and Mahmoud Rasras^{1,2} ¹ Department of Electrical and Computer Engineering, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.

² NYU Tandon School of Engineering, New York University, New York, USA

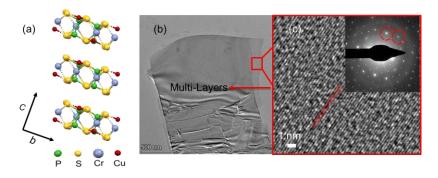
ghd1@nyu.edu

Tunable optical materials are crucial in integrated photonic circuits, where precise refractive index control is essential for diverse applications [1,2]. Two-dimensional (2D) materials like transition metal dichalcogenides (TMDs) have shown promise [3,4], but efficient phase modulation in the short-wave infrared (SWIR) with low loss remains challenging.

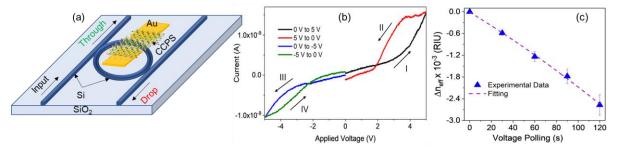
In this work, we demonstrate the strong electro-refractive response of multilayer ferroionic $CuCrP_2S_6$ (CCPS) integrated into silicon photonics (SiPh) microring resonators (MRRs) in the near-infrared. The migration of Cu ions under an applied electric field enables refractive index tuning of approximately 2.8×10^{-3} RIU, while preserving extinction ratios and resonance linewidths. The devices exhibit low optical losses, with a modulation efficiency of 0.25 V-cm and a consistent blue shift in resonance wavelengths across both voltage polarities, outperforming previous TMD-based phase shifters.

Additionally, we observe polarization-dependent electro-optic tuning, with distinct responses for transverse electric (TE) and transverse magnetic (TM) modes. The dual optoelectronic and ionotronic capabilities of CCPS-based devices offer potential applications in phased arrays, optical switching, environmental sensing, optical imaging, and neuromorphic computing.

References


[1] G. Dushaq, et al. Electro-optic tuning in composite silicon photonics based on ferroionic 2D materials. Light Sci Appl. 13 (92) (2024).

[2] S. R. Tamalampudi, et al. A Multi-layered GaGeTe Electro-Optic Device Integrated in Silicon Photonics, J. Lightwave Technol. 1–7 (2023).


[3] I. Datta, et al. Low-loss composite photonic platform based on 2D semiconductor monolayers, Nat. Photonics 14(4), 256–262 (2020).

[4] Y. Yu, et al. Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers," Nano Lett. 17(6), 3613–3618 (2017).

Figures

Figure 1: Structural characteristics of CCPS (a) 3D visualization of bc plane (ball-stick model) (b) high-resolution transmission electron microscopy (HRTEM) of multilayer CCPS captured at the red squared area.

Figure 2: (a) Schematic configuration of the photonic design and CCPS integration (b) full I–V curves swept in the order 0 V \rightarrow 5 V \rightarrow 0 V \rightarrow -5 V \rightarrow 0 V labeled as I, II, III, IV (c) the change in real part of effective index of refraction as a function of the polling time at E= 1x10⁴ V/cm.