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Neural networks are powerful tools to learn patterns 
and make inferences in complex problems. 
However, they rely on a massive number of neurons 
and interconnecting weights which require extensive 
training using a large dataset. To compensate for 
this, reservoir computing is based on recurrent 
neural networks with randomly fixed weights. 
Thereby, only the output weights require training for 
a particular task, reducing the training to a simple 
linear regression. Recently, there has been a shift 
towards physical reservoir computing, offering 
potential advantages in speed, energy efficiency, 
and hardware simplicity. Physical reservoir 
computing utilizes the inherent nonlinearity of 
physical systems to map the input into a higher-
dimensional space in which different input patterns 
become linearly separable. New advancements and 
experimental implementations use diverse physical 
substrates, including mechanical structures, optical 
systems, and spintronic devices.  
 
In our work, we take advantage of the rich nonlinear 
dynamics inside magnetic vortices. Their eigenmode 
system comprises the gyrotropic motion of the 
vortex core as well as magnon modes with well-
defined radial and azimuthal quantization in the 
vortex skirt. A few mode profiles are depicted in 
Figure 1. By harnessing the nonlinear interactions 
between these different vortex eigenmodes in 
reciprocal space, it is possible to perform temporal 
information processing and pattern recognition 
without relying on information transport in real space 
[1]. This presentation will give a comprehensive 
overview of experimental results and numerical 
simulations demonstrating the capabilities and 
advantages of magnon reservoir computing inside a 
magnetic vortex. 
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Figure 1. Working principle of a magnon-scattering 
reservoir. Radiofrequency pulses with different temporal 
order but the same average frequency content are used to 
trigger nonlinear scattering between the magnon 
eigenmodes in a magnetic vortex disk. The dynamic 
response is experimentally detected using Brillouin-light-
scattering microscopy. In contrast to a linear system, the 
magnon-scattering reservoir produces different outputs 
depending on the temporal order of the input. 

 
 
 


