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Abstract
Machine learning-based interatomic potentials have
revolutionized materials modeling at the atomic
scale, enabling simulations of ab initio quality over
significantly larger time and length scales. Recently,
several universal machine-learning models have
been proposed as "out-of-the-box" solutions,
eliminating the need to train and validate specific
potentials for each material of interest. In this poster,
we review and evaluate four different universal
machine learning interatomic potentials (uMLIPs), all
based on graph neural network architectures that
have demonstrated transferability across different
chemical systems. The present evaluation leverages
data from both a recent verification study of density-
functional theory (DFT) implementations and the
Materials Project. This comprehensive assessment
aims to guide materials scientists in selecting
appropriate models for their specific research
challenges, provide recommendations for model
selection and optimization, and stimulate discussion
on potential areas for improvement in current
machine-learning methodologies within materials
science.
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Figures

Figure 1. (a) Violins plots of the MAE on the computed
phonon band structures from uMLIPs and DFPT.
(b) Comparison of the phonon band structures computed
with DFPT and MACE for the compound (mp-567744:
SrBr2) with the smallest MAE (0.3 meV). (c) Comparison
of the phonon band structures computed with DFPT and
ALIGNN for the compound (mp-1569: Be2C) with the
largest MAE (75.4 meV).
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