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The rapid advancement of generative deep learning
models  [1-4]  has  opened  new  avenues  for  the
discovery  of  stable  materials  with  targeted
properties. However, despite their promising results,
evaluating these models remains challenging due to
the  lack  of  standardized  evaluation  methodologies
and  alignment  with  chemists’  requirements.  The
most  reliable  evaluation  technique,  Density
Functional  Theory  (DFT)  simulations,  provides
accurate  assessments  of  material  stability  but  is
computationally expensive and often inaccessible to
non-experts. To address this gap, we introduce an
easy-to-use  and  efficient  evaluation  tool  that
seamlessly  integrates  pre-tuned  DFT  simulations
with a diverse set of robust metrics,  enabling both
chemists and ML practitioners to assess generative
models  effectively.  Our  framework  performs
automated  DFT  static  energy  calculations  and
relaxations, and stability validations against existing
material databases through convex hull construction
[5],  ensuring  a  rigorous  yet  accessible  evaluation
process. By making these complex simulations more
user-friendly  and computationally  feasible,  our  tool
fosters greater collaboration between chemistry and
ML communities, accelerating the discovery of novel
materials. Our methodology is fully transparent, well
documented  and  open-source,  ensuring
reproducibility and broader adoption.
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Figures

Figure 1. Global overview of the metrics pipeline workflow.
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