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Here, we discuss two aspects of machine learning 
(ML) for materials centered around new and faster 
methods for predicting and discovering complex or 
“hard to obtain” properties of advanced materials.  
    Recent advancements in ML4Materials have 
demonstrated that apparently simple materials 
representations like the chemical formula without 
any structural information can sometimes achieve 
competitive property prediction performance in 
common tasks. Our physics-based intuition would 
suggest that such representations are “incomplete,” 
which indicates a gap in our understanding. Using a 
tomographic interpretation of structure-property 
relations to bridge that gap by defining what is a 
material representation, material properties, the 
material, and the relationships between these [1]. 
We apply concepts from information theory to verify 
this framework by performing an exhaustive 
comparison of property-augmented representations 
on a range of materials property prediction 
objectives.  
   With this in mind, we, as scientists, might not know 
a priori which experiments or simulations will 
ultimately provide the most valuable information to 
capture the “ghost of the material,” i.e., what is the 
fastest or least expensive path to obtain a complex 
material's property. Is it, e.g., more valuable to know 
the formation energy per atom than to know the total 
magnetization to predict the band gap (Figure 1)?  
   This then begs the question, how can we 
dynamically orchestrate the acquisition of such 
multimodal information and datasets of unknown 
dimensionality, which may not even be available in 
our own labs? 
   To begin to answer these questions, we will show 
two examples of how dynamic workflow 
orchestrators like PerQueue [2] are capable of 
orchestrating multimodal data acquisition from 
simulations and experiments, and the FINALES 
(Fast INtention-Agnostic LEarning 
Server) framework [3] for integration of data from 
geographically distributed Materials Acceleration 
Platforms (MAPs) [4] or self-driving laboratories 
(SDL) [5].  
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Figure 1. Percentage change in MAE of an augmented vs 
a non-augmented composition-restricted representation 
[1]. 
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