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Colloidal quantum dots (QDs) exhibit complex 
electronic, optical, and structural properties that are 
crucial for various applications in optoelectronics, 
photovoltaics, and nanomedicine. The development 
of precise and computationally efficient tools to 
model QDs with high accuracy is a key area of 
research [1]. 
In this work, we employ machine learning 
techniques to predict QD forces and energies with 
the same level of accuracy as density functional 
theory (DFT), but at a significantly reduced 
computational cost. This approach, particularly 
beneficial for larger systems, enables molecular 
dynamics (MD) simulations to be extended to 
timescales that were previously unattainable with 
DFT. 
Large datasets derived from reference DFT-based 
MD simulations are used to train machine learning 
models, which provide accurate predictions of 
interatomic forces and energies. The resulting ML-
driven force fields effectively replicate key structural 
characteristics of colloidal QDs, especially in the 
surface region, and their performance is rigorously 
validated against theoretical predictions and 
experimental observations [2]. 
In this study, I present a diverse range of 
nanostructural combinations, including CdSe, InP, 
PbSe, and CsPbBr₃ QDs, trained using ML-based 
force fields. The findings underscore the critical role 
of machine learning in advancing our understanding 
of QD behavior under various experimental 
conditions, including their synthesis environment 
and their application in optoelectronic devices such 
as thin films. This work highlights the transformative 
potential of integrating machine learning into the 
computational toolkit for nanomaterial design. 
 
 

References 
 
[1] F. P. García de Arquer, D. V. Talapin, V. I. 

Klimov, Y. Arakawa, M. Bayer, and E. H. 
Sargent, ‘Semiconductor quantum dots: 
Technological progress and future challenges’, 
Science, vol. 373, no. 6555, p. eaaz8541, Aug. 
2021, doi: 10.1126/science.aaz8541. 

[2] O. T. Unke et al., ‘Machine Learning Force 
Fields’, Chem. Rev., vol. 121, no. 16, pp. 
10142–10186, Aug. 2021, doi: 
10.1021/acs.chemrev.0c01111. 

 

Figures   

 
Figure 1.  Illustration of quantum dot (QD) structures 


