Transport mechanism of solidstate electrolytes via machine learning potentials at hybrid DFT level

Davide Tisi¹, Federico Grasselli², Hanna Tuerk¹, Lorenzo Gigli¹, Michele Ceriotti¹ ¹EPFL, COSMO lab, Lausanne 1015, Switzerland ²UNIMORE, Via Giuseppe Campi, 213/A, Modena, Italia

davide.tisi@epfl.ch

Lithium ortho-thiophosphate (Li_3PS_4) is a promising solid-state electrolyte for batteries, yet the

microscopic mechanisms governing Li-ion transport within it remain unclear.

Moreover, computational works have yet to compute the thermal conductivity at the DFT level. In this talk, I will show how we build machine learning potentials trained over state-of-the-art DFT references (PBEsol, SCAN, and PBE0) to study the electrical [1] and thermal conductivity [2] of all the known phases of Li₃PS₄ (α , β and γ), for large system sizes and timescales. I will discuss the physical origin of the observed superionic behaviour of Li₃PS₄, where the PS₄ flipping drives a structural phase transition to a highly conductive phase, characterised by an enhancement of Li-site availability and by a drastic reduction in the activation energy of Li-ion diffusion. I will show the effect of the phase transition on both the electrical and thermal conductivity. We elucidate the role of inter-ionic dynamical correlations in charge transport by highlighting the failure of the Nernst-Einstein approximation to estimate the electrical conductivity. Then, we will discuss how conductivity presents thermal two distinct behaviours: low and constant with temperature for the α and β phases and a phonon-like behaviour for the y phase. In the last part of the presentation, we will focus on our latest results on surfaces of Li₃PS₄, showing how the rotation of the PS4 tetrahedra affects surface reconstruction.

References

 L. Gigli, D. Tisi, F. Grasselli and M. Ceriotti, *Chem. Mater.*, **2024**, 36, 1482–1496
D. Tisi, F. Grasselli, L. Gigli and M. Ceriotti, *Phys. Rev. Materials*, **2024**, 8, 065403

Figures a) 750 K 725 K 900 |) 100 0 . چ 100 0 .) چ 100 0 2.5 5. Time (ns) 0.0 2.5 5.0 0.0 5.0 Time (ns) Time (ns) PS1 PS2 PS3 PS4

Figure 1. Rotation of the PS₄ tetrahedra. θ_{SP} is the angle between the PS bound and the *x*-axis. We can identify three regimes: at low temperatures, the tetrahedra oscillate around their equilibrium position; around 750K, the tetrahedra start to flip; at very high temperatures, the tetrahedra rotate freely.