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Abstract 
 
The rapid expansion of material science databases 
presents unprecedented opportunities to leverage 
vast volumes of quantum chemistry data. These 
large computational databases represent a great 
resource to train predictive machine learning models 
to make fast and accurate predictions of materials 
properties, as well as to train generative models to 
search in the combinatorial space of possible 
material candidates. Recent advancements in the 
ML community, enabled by the increased size of 
available datasets, have the potential to transform 
the discovery of novel materials with tailored 
properties. Initiatives like Materials Project [1, 2], 
OQMD [3], and Alexandria [4] have expanded the 
scope of computational materials science and fueled 
progress in the community. However, they also 
introduced issues of duplication, data integration, 
and interoperability, complicating efforts and limiting 
the efficiency of the machine learning community. 
More broadly, there are challenges related to limited 
high-quality data, inconsistent computational 
parameters, and lack of benchmarking for material 
novelty persist.  
 
To address these challenges, we introduce LeMat-
Bulk, a unified dataset combining Density 
Functional Theory (DFT) calculations from the 
Materials Project, OQMD, and Alexandria. This 
dataset encompasses over 5.3 million materials 
across three DFT functionals, including the largest 
repository of PBESol and SCAN functional 
calculations (~500k). Our methodology standardizes 
DFT calculations across databases with varying 
parameters, resolving inconsistencies and 
enhancing cross-compatibility.  
 
Standardization involved reconciling 
pseudopotentials, Hubbard U corrections and spin-
polarization settings, all of which are critical for 
consistency; to this end we excluded incompatible 
calculations from these datasets. We ensured 
uniform structural data by adopting the Optimade [5] 
specification and standardizing property names 
across databases. To augment missing charge 
information, we performed Bader charge 
calculations for over 53k materials within the 
Materials Project dataset. By addressing key 
barriers to compatibility and providing tools for data 

integration, LeMat-Bulk establishes a standardized 
foundation for leveraging large-scale materials 
datasets. Previous efforts observed chemical biases 
in the database, which were partly reduced. Rare-
earth elements now tend to form more compounds 
with other rare earths rather than oxides, and 
similarly with transition metals. Such an increased 
compositional diversity is crucial for machine 
learning models, as it enhances their ability to 
generalize effectively by providing a more balanced 
and representative foundation for training. 
 
Furthermore, one key issue in materials databases 
is that of data redundancy, due to duplicates which 
is in part due to the complexity in representing these 
structures. To prevent redundancy and streamline 
data integration, we propose a hashing function 
that generates identifiers for materials by capturing 
their structural and compositional properties. 
Material fingerprints are calculated based on the 
ECoN [6] bonding algorithm to construct a bonded 
graph structure of the most primitive unit cell and the 
Weisfeiler-Lehman (WL) hash. To further 
discriminate between different materials, we 
incorporate the space group number and the 
reduced composition in the fingerprint.  
 
Our fingerprint approach proved effective by 
identifying over 340,000 duplicate structures. This 
was then validated by 81% of the matched structure 
groups with the same PBE functionals showing 
energy differences below 0.250 eV/atom. For 
structures with large energy discrepancy but 
matching fingerprint, DFT calculations revealed that 
many of these entries could be relaxed to the same 
structure. In comparison with existing deduplication 
methods, our approach demonstrates superior 
performance in handling symmetry and translation 
operations. It is also less sensitive to atomistic and 
lattice vector noise. It also delivers more than three 
orders of magnitude better computational efficiency 
compared to Pymatgen’s StructureMatcher [7] and 
other structure matching and pairwise similarity-
based methods. This methodology enables robust 
connections between databases with varying 
properties and calculation parameters. By matching 
Alexandria materials with the Materials Project 
database, for example, a user could connect the rich 
properties calculated by Materials Project to 
Alexandria entries. Our cross-functional analysis 
revealed important trends across energy, 
magnetization, and fermi energy. 
 
This enables identification of unique materials within 
the dataset but is also valuable for generative 
modeling in materials science where the goal is to 
design novel materials with specific properties. The 
lack of well-benchmarked computational approaches 
to define novelty has posed a significant limitation to 
advancing generative models making challenging to 
quantify performance. Combined with the inability to 
experimentally validate many generated materials, 
researchers face both theoretical and practical 
barriers, hindering progress in material discovery. 
Comprehensive benchmarking under atomic noise, 
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lattice strain, and symmetry transformations 
underscores our fingerprint's efficacy in identifying 
duplicates and disordered materials. The benchmark 
highlights its robustness across a wide range of test 
cases compared to existing methods such as 
StructureMatcher, SLICES [8] and CLOUD [9]. 
 
By ensuring that each material is distinctly 
represented, our approach facilitates the discovery 
and verification of new materials, enhancing the 
reliability of generative workflows. This serves as a 
centralized resource for accessing vast and 
compatible data collections, facilitating 
advancements in generative materials and 
accelerating the transition to scalable AI-driven 
materials discovery. These advancements allow for 
more efficient discovery pipelines, where AI can 
rapidly generate, evaluate, and suggest materials 
with tailored properties, accelerating progress in 
fields like battery technology, semiconductor 
manufacturing, and the design of new catalysts for 
sustainable energy applications, such as hydrogen 
production or carbon dioxide capture [10]. 
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Figure 1. Periodic Table illustrating the elemental 
coverage of LeMat-Bulk. Highlighted elements represent 
those with substantial representation reflecting the 
diversity and depth of the dataset across chemical space. 
 

 
Figure 2. Average Success Rate of Hashing Method 
Under Random Transformations and Deformations 
(Including Noising, Strains, and Translations). 


