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X-ray photoelectron spectroscopy (XPS) is a surface 
sensitive (<10 nm) characterization technique used 
to investigate material properties including chemical 
composition, chemical depth distribution and 
electronic structure [1,2]. Particularly in recent years, 
XPS has become a reliable and advanced 
experimental technique in various disciplines of 
science and engineering resulting in the generation 
of large spectral data sets. Extracting quantitative 
information from these data sets has traditionally 
required trained spectroscopists to perform empirical 
peak-fitting routines for each individual spectrum. 
For example, to obtain the atomic concentration of a 
particular element in a sample, the expert needs to 
determine the integrated peak area from non-trivial 
fitting routines based on the inelastic scattering 
background and zero energy loss line shapes, and 
normalize it according to relative sensitivity factors 
[3]. In response to the increasing demand for reliable 
and instantaneous spectral analysis due to the 
advancement of XPS at synchrotrons and with 
modern XPS instruments, we propose an automated 
quantitative X-ray photoelectron spectrum analysis 
pipeline by combining the Simulation of Electron 
Spectra for Surface Analysis (SESSA) software with 
a convolutional neural network (CNN). SESSA 
serves as an important tool in the field of XPS either 
as a database for material parameter retrieval or as 
a Monte Carlo based simulation software for 
quantitative interpretation of XPS spectra or Auger 
electron spectra (AES) for a variety of material 
structures such as bulk, nanostructures, layered 
spheres, or core-shell nanoparticles [4,5]. SESSA is 
based on the partial intensity approach (PIA), which 
considers the energy loss per number of inelastic 
collisions during the electron transport, and 
simulates the electron trajectory using a Monte Carlo 
simulation with the trajectory reversal approach [5]. 
The generated electron spectrum consists of the 
core-shell electron peaks, Auger peaks and a 
scattering background resulting in relatively realistic 
spectra. In this work SESSA is used to generate 
approximately 1.2 million spectra for 7579 inorganic 
and organic bulk compounds and single elements, 
illustrated by the histogram overlaid with the periodic 
table in Figure 1. To increase the variability in the 
simulated data set and to reflect experimental 
conditions including thermal and instrumental 
broadening, we augment our simulated spectra by 
considering different chemical shifts, different peak 

widths and different peak shapes (Gauss, Lorentz). 
These simulated spectra, together with their 
corresponding chemical abundance labels, were 
used to train a CNN to classify the stoichiometry of 
non-crystalline bulk materials (see Figure 2). The 
aim of the study is to investigate the feasibility of 
applying deep learning models to high-throughput 
material characterization within XPS by generating a 
data set of XPS survey spectra. The current model 
can already predict the concentration of the most 
common single elements (Z=5 to 17) studied in XPS 
(88% accuracy, mean absolute error 0.08) that are 
constituents of the bulk compound but fails to 
classify the full stoichiometry of complete complex 
compounds (20% accuracy) in the test set. In Figure 
3 we compare the true and predicted concentration 
in the test set, illustrating the overall agreement 
between prediction and ground truth with missing 
classification especially for atomic numbers (Z > 17) 
for which we have little data in the data set. An 
example of a correct classification of an XPS survey 
spectrum included in the test set is shown in Figure 
4. We are currently working on improving the 
network performance to classify more complex 
compounds correctly. We are also testing the 
performance of the network on experimental data 
and comparing it with classical peak-fitting routines. 
In the future, we plan to extend our dataset to 
structured materials, again using our simulation 
software SESSA for film thickness prediction applied 
to high-throughput depth profiling which is another 
key application of XPS in materials analysis [6].  
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Figure 1. Element frequency in the simulated spectral 
data set. 
 

 
Figure 2. Convolutional Neural Network architecture used 
to predict the stoichiometry of bulk materials based on 
XPS survey spectra of input size (2048x1).  
 

 

 
Figure 3. Comparison between actual concentration and 
predicted concentration of the test set.  

 

 
Figure 4. Example of predicted concentration from the 
XPS survey spectrum compared to the ground truth 
stoichiometry of the material.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


