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Supported clusters, with the cluster and the support
being either metals or oxides, are an active area of
research in catalysis1,2, such as in the case of ZnO
and  Cu  surfaces  and  nanoparticles,  our  target
systems. Computer simulations can provide valuable
information,  but  they  face  challenges such  as  the
system size,  which  limits  the  use  of  accurate  but
demanding  electronic  structure  methods.  On  the
other  hand,  machine-learning  potentials  (MLPs)
could bridge the complexity gap between electronic
structure methods such as density functional theory
(DFT)  and  traditional  empirical  potentials,  if
developed with  enough accuracy and reliability  by
building  upon  datasets  obtained  from  numerous
electronic-structure calculations. During this project,
we  will  leverage  this  modern  methodology  to
generate large sets of  structures in order to study
more  realistic  structures  of  catalysts  and  replicate
phase diagrams in order to provide insights into the
catalytic activity of the material. A Python package
has been developed in order to generate the initial
training  data.  The  data  is  generated  following  the
phase  diagram  of  the  alloys,  gathering  template
structures for each phase of the material  from the
Materials  Project  dataset3.  Parting  from  these
templates, the code then generates new structures
by applying atomic replacements, thus changing the
composition  of  the  material.  This  is  followed  by
random  perturbations  of  the  coordinates,  which
allow to  obtain structures from different  regions of
the potential  energy surface (PES) of  the material
and by applying small displacements to the lattice,
which  result  in  structures  close  to   PES  minima.
Around 10000 initial structures are generated. The
potential  energy and forces of  the structures were
determined  through  DFT  calculations  using  the
VASP 5.4.4 code employing PBE pseudopotentials
with  DFT-D3  as  the  dispersion  correction,  and
settings  determined  through  a  benchmarking
process that resulted in a difference of energy per
atom  smaller  than  1  meV/atom  between  different
settings. Two libraries for the construction of NNPs,
n2p24 and  MACE5  are  tested.  The  potentials  are
trained  using  the  generated  initial  database,  and
then a committee training procedure follows, where
4 different NNPs are trained using an active learning
(AL) loop to generate new structures where there is
a  large  discrepancy  in  prediction  between  the
potentials  using  several  extrapolation  checking
techniques.  The  resulting  NNP  is  used  to  drive
neural-network  based  molecular  dynamics
simulations (NN-MD) at  different  temperatures and
timescales.  The  aiida6  workflow  library  is  used  to

automate  the  structure  generation,  extrapolation
check, calculation submission and AL loop.  In this
study,  large-scale  NN-MD  simulations  were
performed  to  understand  the  behavior  of  the  the
CuZn alloy as a catalyst for CO2 hydrogenation. This
potential  was devised gradually, starting from pure
Cu  and  CuZn  and  later  adding  ZnO.  The
implementation  of  this  potential  demonstrated
excellent  performance  when  used  to  simulate  the
behavior of the CuZn alloy. The phase diagram of
the alloy was predicted based on the results of MD
simulations  simulations  at  different  conditions,
obtaining results that match the expected shape of
the diagram. The most stable structure of the CuZn
alloy was obtained from MD simulations ran at large
spatial  and  temporal  scales.  The  most  common
ensembles  were  identified  by  coordination
environment and graph theory analysis. The study's
findings  reveal  the  structure  of  CuZn,  providing  a
substantial  basis  for  further  investigations  into  the
creation mechanism of long-chain hydrocarbons.
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Figure 1. Diagram depicting the active learning procedure.


