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Per- and Polyfluoroalkyl substances (PFAS) are a 
broad group of chemicals, widely used in various 
applications, like aerospace and defense, 
electronics and textiles and coatings [1]. Their 
extensive production has raised significant concerns 
due to their adverse effects on human and animal 
health, as well as environmental systems [2]. A key 
concern regarding the use of PFAS is their long half-
lives in both animals and humans. Especially for 
humans, the reported half-lives of many PFAS are in 
the range of years [3,4]. This persistence is 
attributed to their strong binding affinity to 
transporter proteins, particularly albumin, which is 
the most abundant protein in human and animal 
blood serum [5]. Understanding the binding behavior 
of PFAS to albumin and their resulting half-lives has 
driven the development of in silico tools to predict 
these critical endpoints [6,7].  
 
Our work aims to develop a computational pipeline, 
capable of predicting the half-life of PFAS in 
humans, enhanced by predictions of their binding 
affinity to serum albumin. This workflow seeks to 
provide predictions across a diverse range of PFAS 
and identify factors that significantly influence their 
retention times in organisms. Specifically, we 
propose a pipeline that consists of two sequential 
machine learning models. The first model predicts 
the binding affinity (association constant) of PFAS to 
serum albumin. These predictions, along with 
additional features, serve as inputs to the second 
model, which estimates the half-life of PFAS. The 
proposed approach not only enables accurate half-
life predictions but also facilitates exploration of the 
relationship between half-life and albumin binding 
affinity.  
 
Both models belong to the quantitative structure-
activity relationship (QSAR) class and make use of 
computational descriptors, which are computed from 
their simplified molecular-input line-entry system 
(SMILES) representations [8]. In addition to 
computational descriptors, experimental information 
such as the albumin assay type (e.g., equilibrium 
dialysis or fluorescence quenching) were included 
as features to account for variability in the datasets. 
Thus, separate training datasets were created for 
each QSAR model, containing computational 

descriptors and experimental data retrieved from the 
literature. These datasets were constructed to cover 
a wide range of PFAS and exposure scenarios, 
enhancing the models’ extrapolation capabilities. To 
manage the high dimensionality of computational 
descriptors, feature selection techniques were 
applied. More specifically, features with low variance 
were removed and highly correlated features were 
eliminated to reduce redundancy.  
 
To ensure reliable predictions, we defined the 
domain of applicability (DOA) of each QSAR model 
[9]. For PFAS congeners that are outside of the 
model’s DOA, the corresponding prediction cannot 
be considered reliable. However, there is not yet a 
standard approach to define the DOA of a model. 
Multiple methodologies have been suggested in the 
literature and each one of them has its strengths and 
weak points [10]. In this work, we followed a strategy 
that implements multiple methodologies (Leverage, 
Mean-Variance, Bounding Box, Mahalanobis 
distance, Kernel-based and City block distance). 
The final decision about reliability of each prediction 
is derived from the majority voting of all 
methodologies. Robustness of the predictive QSAR 
models was examined through k-fold cross-
validation, and Y-randomisation tests were 
performed to ensure that that the predictive ability of 
the models is not driven by chance correlations.  
 
To gain insights about the relationships that exists 
between the endpoints and the independent 
features, we utilized SHapley Additive exPlanations 
(SHAP) values [11]. SHAP values provide a deep 
understanding of how molecular descriptors and 
experimental conditions influence binding affinity 
and half-life predictions. These values, grounded in 
game theory, are model-agnostic and offer multiple 
benefits: they identify outliers during training, provide 
explanations of how individual predictions are 
obtained by highlighting key contributing features 
and assess feature importance in the produced 
QSAR models [12]. 
 
The final stage of our work involves providing the 
QSAR models as online services. To achieve this, 
the models were deployed on Jaqpot 
(https://app.jaqpot.org), a self-developed online 
platform that hosts machine learning models and 
enables users to make predictions online. Deploying 
the models facilitates their integration into a 
streamlined pipeline that takes SMILES 
representations and other necessary data as input to 
predict the association constant of PFAS with 
albumin. The output can subsequently be used as 
input to the half-life QSAR model. The Jaqpot User 
Interface (UI) allows assessing the reliability of these 
predictions by verifying whether they fall within the 
models' DOA. 
 
The developed models will be highly significant in 
the design of next-generation PFAS, aiming to 
enhance performance while addressing 
environmental concerns and minimizing adverse 
effects on humans and animals. 

https://app.jaqpot.org/
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