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Two-dimensional (2D) materials have emerged as 
key enablers of next-generation electronic, 
optoelectronic, and quantum technologies due to 
their exceptional physical properties [1,2]. However, 
achieving scalable and reproducible synthesis 
remains a major challenge. While chemical vapor 
deposition (CVD) has demonstrated success for 
certain 2D systems, many materials and 
heterostructures still lack autonomous, high-
throughput fabrication methods that ensure high 
crystallinity, controlled thickness, and defect 
minimization at scale. Artificial intelligence (AI) 
presents a transformative opportunity to optimize 
these processes [3], not only by accelerating 
parameter discovery but also by dynamically refining 
synthesis methodologies through real-time 
experimental feedback. 
We present an AI-driven protocol integrating 
adaptive Monte Carlo (aMC) optimization with 
Transformer-based spectral analysis to refine 2D 
material synthesis. Our autonomous synthesis 
framework iteratively refines growth conditions, 
learning time-dependent process parameters without 
predefined heuristics. The aMC approach generates 
and executes randomized growth protocols, 
assessing outcomes via Raman spectroscopy-based 
feedback. A score function, based on spectral 
features such as 2D intensity, full-width at half 
maximum (FWHM) , guides an evolutionary learning 
process. The system selects, mutates, and refines 
the best-performing protocols over successive 
iterations, progressively improving material quality 
with minimal human intervention [4,5]. A schematic 
of this workflow is depicted in Figure 1. 
Although Raman spectroscopy is a powerful tool for 
2D materials [6], conventional peak-fitting 
techniques struggle with complex heterostructures, 
where overlapping vibrational modes obscure key 
features. To overcome this, we incorporate 
Transformer-based architectures [7] that use 
self-attention mechanisms to disentangle 
spectral components, extract weak signals, and 
enhance material evaluation. While our aMC-driven 
synthesis already functions effectively, integrating 
AI-enhanced spectral analysis further accelerates 

optimization, particularly when standard peak-
matching fails to provide a clear assessment of 
material properties. 
By combining adaptive synthesis with Transformer-
enhanced characterization, we establish a self-
refining AI workflow, where synthesis optimization 
and spectral analysis continuously inform each 
other. This work demonstrates a clear pathway 
toward fully autonomous materials laboratories, 
ensuring scalable, reproducible, and high-quality 2D 
material production, while accelerating the discovery 
and application of novel quantum and electronic 
materials. 
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Figures 

  
Figure 1. Schematic representation of ANN training used 
in this work. After initialization with the parameter guess, 
the protocol generation is conducted (i), followed by 
sample growth (ii). The sample obtained is then 
characterized through Raman spectroscopy (iii). The 
extracted data are used to evaluate the score (iv). Finally, 
the protocol is updated with the new parameters (v) and a 
new protocol is generated. 
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