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High-entropy materials are a new frontier of functional 
materials for applications such as thermal protection, 
catalysis and batteries [1]. Because of the very large 
chemical space, computational materials modelling 
can help in identify new high high-entropy ceramics 
with optimal properties [Fig 1]. In this talk, we report 
our efforts to develop an automated framework that 
integrates machine learning methodologies with high-
throughput computational processes, enhancing the 
efficiency of discovering novel high-entropy oxides 
suitable for fuel cell applications. This framework has 
its foundation in a recent dynamic workflow 
management system, called PerQueue [2]. 
PerQueue allows a new level of flexibility in 
integrating Density Functional Theory (DFT) 
simulations for the estimation of structural and kinetic 
properties, with machine learning models, to predict 
and explain the origin of these properties. The 
calculation of kinetic properties (via the Nudged 
Elastic Band, NEB, method [3]), in particular, are still 
orders of magnitude more computationally 
demanding than the estimation of the basic structure 
of the materials. In addition, the intrinsic disorder of 
these materials requires many barriers to be 
calculated for each composition, which is unfeasible.  
 

Machine learning models can help us in this. Starting 
from the MACE foundation model, [4, 5] we have fine-
tuned it using our unique dataset composed of 
several thousands of unique high-entropy oxe-
perovskite materials. The dataset contains pristine 
materials as well as single oxygen vacancies and 
transition state structures. The aim of this approach is 
multifold. From one side, we assess how many 
structures of each category is needed to train a 
MACE model to have a good predictive power [Fig 2.] 
(mean absolute error below ~12 meV/atom), reducing 
the amount of expensive calculations to include in 
favor of cheaper ones; from the other, we want to 
define a model to predict high-entropy oxides with 
low-oxygen diffusion barriers (i.e., candidates to be 
used as cathode materials in proton conducting fuel 
cells). Finally, we develop an explainable AI model, in 
the framework of the SISSO model, to identify the 
origin of low/high oxygen diffusion barriers, defining 
criteria for the design of high-performance oxygen 
conductors. 
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Figure 1. Ordered (top/orange) and disorder 

(bottom/green) oxides. Our goal is to use disorder to 

generate structures with improved properties for fuel cell. 

 

Figure 2. The predicted energy error of the NEB transition 

state from finetuning the MACE model on three different 

datasets. We have finetuned with datasets containing 

pristine- (blue); pristine and vacancies- (orange); pristine, 

vacancies and transition state (green) structures. The 

corresponding MAE is reported in the legend. 


