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Abstract 
 
The increasing global demand for sustainable 
energy storage solutions has underscored the 
critical role of lithium-ion batteries in advancing 
modern energy technologies.[1] Among various 
cathode materials, lithium-rich layered oxides 
(LRLOs) have emerged as one of the most 
promising candidates due to their high theoretical 
energy density, driven by dual cation-anion redox 
processes, and the economic advantages of using 
primarily earth-abundant manganese.[2-4] These 
materials, however, face significant challenges such 
as voltage fade, capacity degradation, and structural 
instability during prolonged cycling.[5, 6] These issues 
arise from their intricate electrochemical behavior 
and inherent material complexities, posing 
substantial obstacles to their commercialization. 
Resolving these challenges necessitates a thorough 
understanding of the degradation mechanisms and 
pathways that limit their performance. 
 
In this study, we present a novel data-driven 
framework to tackle these challenges. By leveraging 
unsupervised machine learning techniques, 
particularly Principal Component Analysis (PCA), we 
developed a systematic approach to analyze 
extensive experimental datasets. The framework 
was applied to more than 30,000 charge curves 
collected under consistent conditions from LRLO 
coin cells. This methodology offers a detailed 
understanding of the key electrochemical features 
influencing material behavior. By isolating and 
analyzing the principal components, we successfully 
disentangled overlapping oxygen and manganese 
redox reactions, thereby providing critical insights 
into the performance and degradation of LRLOs. 
 
The analysis revealed the physical significance of 
the two principal components, PC1 and PC2. PC1 
primarily captures kinetic properties, such as cell 
resistance, which suppress oxygen redox reactions. 
PC2, on the other hand, reflects manganese 
reduction and the ratio of cation and anion redox 
reaction. These insights were instrumental in 
elucidating the degradation mechanisms of LRLOs. 
Through this analysis, we identified a typical 
degradation pathway: PC2 increases initially, 
followed by a rise in PC1. This sequence suggests 
that manganese reduction dominates the early 

degradation stages, while resistance increases 
become prominent in the later stages. The ability to 
interpret the relationship between PC1 and PC2 
offers a systematic way to understand and mitigate 
performance loss. 
 
In addition to the typical degradation pathway, the 
PCA framework enabled us to identify and 
characterize alternative degradation pathways. 
Deviations from the typical pathway were analyzed, 
revealing subtle differences in how material 
compositions and synthesis methods affect 
degradation. This comprehensive diagnostic 
capability enhances our understanding of LRLO 
behavior under various conditions and facilitates the 
development of tailored strategies to address 
specific performance issues. 
 
The predictive power of the PCA framework further 
underscores its utility. By using partial voltage data, 
the model accurately reconstructed complete charge 
curves with minimal error. Even when applied to new 
datasets not included in the training phase, the 
model maintained high accuracy, achieving a root 
mean squared error (RMSE) of less than 0.4 mAh/g. 
This level of predictive accuracy is particularly 
valuable for rapidly screening and optimizing LRLO 
compositions and synthesis methods. Moreover, the 
ability to generalize to new datasets highlights the 
robustness of the framework in real-world 
applications. 
 
One of the key strengths of the proposed framework 
lies in its robustness and adaptability. The 
generalization ability of the PCA model was 
validated by comparing PC1-PC2 plots of test 
datasets with those of training datasets. Despite 
variations in material compositions and experimental 
conditions, the reconstruction accuracy of the test 
set closely matched that of the training set. 
Additionally, the model demonstrated the capacity to 
identify outlier scenarios characterized by significant 
deviations in PC1 and PC2 values. These outliers, 
associated with phase separation and severe 
degradation, were confirmed through 
complementary XRD analyses. Importantly, the 
inclusion of outlier data in the training set did not 
alter the structure of the principal components, 
demonstrating the resilience of the model. This 
characteristic eliminates the need for frequent 
retraining and ensures sustained performance, 
making the framework particularly suited for dynamic 
research environments. 
 
The interpretability of the PCA framework also plays 
a crucial role in its practical application. By 
connecting principal components to physical 
properties such as resistance and redox activity, 
researchers can gain actionable insights into the 
interplay between structural evolution and 
electrochemical behavior. For instance, PC1 trends 
can inform strategies to mitigate resistance growth, 
while PC2 patterns offer clues for stabilizing 
manganese redox reactions. Such insights are 
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essential for guiding the rational design of LRLO 
materials with enhanced performance and stability. 
 
In conclusion, this study introduces a transformative 
approach to addressing the critical challenges 
associated with LRLO development. By combining 
data-driven methodologies with domain expertise, 
we have provided new insights into the degradation 
mechanisms and pathways of these promising 
cathode materials. The proposed framework not only 
advances the understanding of LRLO 
electrochemical behavior but also paves the way for 
the design of next-generation lithium-ion batteries 
with superior stability and energy density. 
Additionally, the versatility of this framework 
suggests its applicability to other battery chemistries 
and energy storage technologies, contributing to the 
broader development of sustainable energy 
solutions. 
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Figures 
 

 
Figure 1. dQ/dV curves as influenced by (a) PC1 and (b) 
PC2. 

 

 
Figure 2. Relationship between characteristic cycle 
behavior and weights of the PC1 and PC2, divided into 
two distinct phases. 

 

 
Figure 3. Average prediction error over the charge curve. 

 


