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Advancements in material science and 
manufacturing processes have revealed the need for 
custom material models within the Finite Element 
Method (FEM). While commercial FEM software 
provides robust frameworks for standard 
engineering tasks, their limitations become apparent 
when addressing cutting-edge materials and 
processes. These challenges are particularly 
pronounced in modeling materials such as polymers, 
composites, or advanced alloys, which exhibit 
behaviors that surpass the capabilities of built-in 
constitutive models. Traditional FEM tools offer a 
narrow range of plastic potentials tailored for 
standard materials like metals. These models 
typically address isotropic or kinematic hardening 
but are insufficient for emerging materials. Polymers, 
composites, and advanced alloys frequently 
demonstrate complex behaviors [1] 
 
User-defined material subroutines (UMATs) extend 
FEM capabilities. By allowing engineers and 
researchers to define unique material responses and 
incorporate novel mathematical formulations, 
UMATs address gaps in traditional FEM-based 
modeling. In implicit time integration FEM codes, 
UMAT subroutines typically take the strain history as 
input and compute the updated stress tensor and 
Jacobian tensor (tangent operator) as outputs. 
These subroutines enable the implementation of 
advanced models that include for example new 
plastic potentials for capturing non-standard material 
behaviors [2]. 
 
The emergence of Artificial Intelligence (AI) offers 
new computing possibilities. The integration of AI 
into material modeling introduces a transformative 
approach to FEM. Specifically, hybrid user 
subroutines combining physics-based principles with 
data-driven neural networks (NNs) provide a 
versatile framework for modeling novel materials. AI 
predicts parameters challenging to derive 
analytically, such as strain-dependent evolution of 
material properties. As is trained with experimental 
datasets, the neural network ensures full adaptability 
to emerging material’s behavior and guarantees 
compliance with established mechanical principles 
[3]. AI substitutes traditional iterative loops in 
plasticity algorithms, significantly reducing 
computational costs.  
 

The goal of this research is to propose and validate 
a methodology for developing an optimized version 
of an AI-enhanced UMAT, Machine Learning User 
Material Subroutine (ML-UMAT) applicable to a 
specific plastic potential. The development and 
optimization of this hybrid model follow a systematic 
approach: 
 

• Subroutine development  
o Initial subroutine implementation in 

Python for neural network development.  
o Transition to Fortran, the typical 

language used in finite element codes 
such as ABAQUS [4], ANSYS [5] or 
CALCULIX [6].  

• Neural network design: 
o Dense architecture optimized through 

hyperparameter tuning. 
o Loss function tailored to subroutine 

performance metrics, with a custom 
penalty term to encourage 
computational efficiency.  

• Validation and Performance Testing of:  
o A uniaxial stress state. 
o A complex stress state model with 

stress concentrations. 
 
The hybrid user subroutine was tested and validated 
using CALCULIX, an open-source FEM software 
known for its flexibility, accessibility, and robust 
features. As a free platform, CALCULIX removes 
financial barriers, making advanced FEM tools 
available to a broader audience and fostering 
innovation and collaboration. Its open-source nature 
ensures research reproducibility by allowing 
researchers to share and replicate models and 
validation cases, enhancing credibility. Furthermore, 
CALCULIX supports deep customization, enabling 
the integration of novel material models and hybrid 
subroutines, essential for advancing experimental 
methodologies.  
 
The study conducted a comprehensive evaluation of 
three material subroutines, each representing 
distinct approaches to modeling plasticity. These 
subroutines were chosen to highlight the strengths 
and limitations of both traditional FEM frameworks 
and the proposed hybrid methodology. Below is a 
detailed analysis of the three subroutines in order of 
complexity: 
 

• J2plasticity. This subroutine represents the 
classic con Mises plasticity model commonly 
used for metals. It serves as a baseline for 
evaluating the computational efficiency and 
accuracy of hybrid models. It provided 
insights into the performance of traditional 
plasticity models when applied to standard 
material behaviors. 

• Porous plasticity model. The Gurson-
Tvergaard-Needleman (GTN)model extends 
traditional plasticity by incorporating void 
nucleation, growth and coalescence, making 
it suitable for modeling ductile damage in 
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materials, and tests the hybrid subroutine 
ability to predict void volume fraction and 
failure criteria. 

• General plasticity. They are designed to 
handle a wide range of material behaviors, 
including anisotropy, rate-dependence, and 
thermo-mechanical coupling. These models 
often require iterative numerical solutions 
due to their complexity, and evaluate the 
hybrid subroutine capability to replicate 
intricate material responses.  

 
The neural network architecture is a deep fully 
connected network tailored to replicate the plastic 
behavior of materials, with the goal of surpassing the 
computational efficiency of classical material 
models. The implementation was developed using 
PyTorch. Hyperparameter optimization was 
performed using the python library Optuna, which 
utilized Bayesian optimization to search for the best 
configuration of hyperparameters, such as the 
number of layers, neurons per layer, learning rate, 
and regularization constants. 
 
A distinctive aspect of this optimization process was 
the inclusion of a custom loss function in the Optuna 
framework. This loss incorporated a penalty term 
based on the execution time of the model, 
encouraging solutions that not only achieved high 
accuracy but also optimized computational 
efficiency. 
 
The validation process was conducted using two 
finite element models. The first model involved a 
uniaxial tensile test, where a cube was subjected to 
tensile loading without stress gradients. This 
simulation served as an initial example to evaluate 
the fundamental accuracy and stability of the hybrid 
subroutine and provide a baseline for comparing the 
neural network predictions against traditional 
constitutive models. The comparison was carried out 
by analyzing the computational performance in 
Python and Fortran environments. 
 
The second validation model, illustrated in Figure 1, 
consisted of a more complex geometry: a prism with 
three circular holes subjected to tensile loading. This 
model introduced stress concentrations, creating a 
variety of different stress states. The performance of 
the hybrid subroutine was assessed by 
benchmarking its execution time and accuracy in 
CALCULIX, using the UMAT implemented in 
Fortran. Comparisons were made between the two 
models and across three plastic potentials: J2, 
porous plasticity, and a general plasticity model.  
 
In conclusion, the hybrid user subroutine represents 
a significant advancement in FEM modeling, 
bridging the gap between traditional physics-based 
approaches and modern AI-driven methodologies. 
The hybrid subroutine demonstrated significant 
improvements in computational efficiency compared 
to traditional models, while maintaining accuracy. 
This framework enables the accurate and efficient 
simulation of complex material behaviors, setting the 

stage for future innovations in material science and 
manufacturing. 
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Figures 

 
Figure 1. 3D finite element model of a prism with three 

circular holes used for validation. 


