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Abstract 
 
Accelerating perovskite discovery and synthesis is 
vital for advancing wireless communication and 
biosensors. The complexity of compositional disorder 
and diverse chemical spaces poses significant 
challenges. To address this, we present an 
automated framework combining machine learning 
(ML), robotic synthesis, and high-throughput 
characterization. An unsupervised deep learning 
strategy identifies material fingerprints from chemical 
compositions, enabling predictions of crystal 
symmetry and facilitating analogical materials 
discovery. This approach streamlines the search 
across ~600,000 compounds with a 94% success 
rate. Validated through rapid synthesis of solid 
solutions like (BaxSr1-x)CeO3, the platform reduces 
processing times to minutes, bridging gaps between 
established knowledge and unexplored materials. 
 
Introduction 
 
Perovskite oxides, with their general ABO₃ crystal 
structure, are an essential class of materials due to 
their unique properties, such as high ionic 
conductivity and ferroelectricity, which make them 
applicable in a variety of technologies, including 
ferroelectric photovoltaics, solid oxide fuel cells, 
electrocatalysis, and resistive switching memories. [1] 
Traditionally, ordered materials were considered 
superior to their disordered counterparts, but recent 
studies have shown that chemically disordered or 
alloyed perovskite oxides often outperform ordered 
ones, offering enhanced functionality for a wide range 
of applications. This realization has led to a surge in 
interest in exploring and synthesizing disordered 
perovskite oxides, yet the vast compositional space 
and complex synthesis pathways have made this a 
challenging endeavor. 
To address this, ML has emerged as a powerful tool 
for accelerating material discovery by predicting the 
properties and stability of materials based on large 
datasets. After making these predictions, the next 
challenge is synthesizing materials into single-phase. 
To assess phase stability under various conditions, 
CALPHAD computational methods and density 

functional theory (DFT) are frequently used.[2] These 
techniques typically assume an equilibrium 
thermodynamic state, which may not fully account for 
the complexities of perovskite oxides, necessitating 
careful analysis. Additionally, integrating temperature 
effects into ab-initio simulations is a demanding 
process, requiring methods such as quasi-random 
structures or molecular dynamics. These approaches 
are often difficult to apply to ML-predicted materials 
due to the limitations in available synthesis data. To 
overcome these challenges, artificial intelligence (AI) 
and collaborative lab robots have been integrated into 
“self-driving laboratories” (SDLs) to accelerate 
material discovery and synthesis. Figure 1 presents a 
comprehensive customizable SDL loop for the 
synthesis and characterization of perovskites, 
highlighting the process through a combination of 
both AI and expert scientific input. 
 

 
Figure 1. The workflow concept. Starting from the top right 
and moving clockwise, the sequence initiates with ML-
models recommending sample library compositions, 
followed by automated pellet creation via the solid-state 
reaction, method, synthesizability validation (e.g., XRD), 
temperature tuning, real-time dielectric property 
measurements, and analysis linking dielectric attributes to 
the synthesis process. The cycle concludes with the 
updating of archives and the generation of AI-driven 
predictions for comprehensive cycle management and 
decision-making.  
 

Method 
 
In this study, we used ML to screen a vast library of 
potential perovskite compositions, focusing on 
disordered quaternary perovskites. The ML models 
were trained using a dataset that included over 1,700 
perovskites and 227 non-perovskites from the 
Inorganic Crystal Structure Database (ICSD). A 
gradient boosting classifier, trained on this data, 
achieved a 94% accuracy rate, allowing us to identify 
nearly 5,000 promising candidates from a pool of 
600,000 possible compositions.  
To refine these predictions, we employed data mining 
techniques, including composition embeddings from 
variational autoencoders (VAE) and Mat2vec. The 
embeddings helped rank candidates based on their 
similarity to known perovskite structures, while expert 
feedback and existing literature were incorporated to 
prioritize materials with high synthesis feasibility. 
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Figure 2. a) Elements that can fully or partially occupy 
octahedral and interstitial sites. b) Average unit cells of and 
materials, usually realized by XRD analysis, c) A gradient 
boosting classifier is iteratively trained on sampled 
experimental data, and d) training VAE model. 

 
A selected set of these ML-predicted materials was 
synthesized using an automated approach, ASAP, as 
reported in the reference. ASAP systematically 
explored sintering variables i.e., sintering hold time, 
sintering temp, heating- and cooling- rates.[3]  
The conditions were optimized through a contour plot, 
identifying ranges where single-phase perovskite 
structures were successfully synthesized. 
Experimental validation with X-ray diffraction (XRD) 
confirmed phase purity in the synthesized materials, 
illustrating the effectiveness of the ML-guided 
approach and automated laboratory. 

 
 
Figure 3. The ASAP experimental setup for automated 
sintering and dielectric characterisation of perovskites. 1) 
Tube furnace, 2) automated dielectric sensor connected to 
vector network analyser and MATLAB graphical user 
interface, 3) sample holder and sample under test, 4) 
infrared temp sensor, 5) automated high-temperature 
furnace, 6) vortex tube, 7) pellet tray, and (8) cobot. 

 
Results 
 
Among different selected compositions for testing, 
two selected compositions, (Ba₀.₈Sr₀.₂)CeO₃ and 

(Ba₀.₄Sr₀.₆)CeO₃, were successfully synthesized as 
single-phase materials. XRD analysis revealed that 
(Ba₀.₈Sr₀.₂)CeO₃, sintered at 1400°C for 10 minutes, 
and (Ba₀.₄Sr₀.₆)CeO₃, sintered at 1250°C for 25 
minutes, achieved a single-phase perovskite 
structure. A contour plot, Figure 4, shows the 
relationship between sintering conditions and XRD 

phase purity indicating that single-phase perovskite 
materials could be synthesized under a variety of 
conditions. Specifically, the plot demonstrated that 
high sintering temperatures (>1350°C) for shorter 
times (<20 minutes) and lower temperatures for 
longer times could both yield single-phase structures. 

 
Figure 4. Process-Structure analysis for ML predicted 
composition. The contour plot of automated rapid sintering 
conditions displays the investigated range of variables and 
their impact on the XRD secondary phase peak of ML-
predicted composition (BanSr1-n)CeO3. 

 
Discussion 
 
The successful synthesis of ML-predicted 
compositions highlights the potential of machine 
learning in guiding the discovery and synthesis of new 
materials, particularly in the case of complex 
disordered systems. The results demonstrate that ML 
can effectively reduce the trial-and-error nature of 
material discovery, allowing for a more systematic 
exploration of compositional spaces and synthesis 
conditions. However, the study also underscores the 
limitations of relying solely on ML predictions. 
Synthesis challenges, such as non-stoichiometry and 
the need for careful control of processing conditions, 
remain significant. Incorporating human expertise 
and feedback into the ML workflow can help address 
these challenges, ensuring that ML predictions are 
grounded in experimental feasibility. Further work will 
focus on enhancing the AI models, expanding the 
dataset using the automated setup, and exploring 
additional synthesis strategies to discover even more 
high-performance perovskites. 
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