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In this work, we present a way to create 

accurate exchange-correlation functionals for density 
functional theory using neural network models and 
grid-based density descriptors, developing a machine 
learning framework called xcquinox. 

Density Functional Theory (DFT) is the 
standard method for studying the electronic structure 
of matter at the atomic scale, as it achieves an optimal 
balance between accuracy and computational cost. 
This enables a first-principles description of complex 
and large systems that would otherwise be 
inaccessible to more precise ab initio methods [1]. 

DFT simplifies the many-body electron 
interactions into a mean-field, single-electron 
description within the Kohn–Sham (KS) [2] approach. 
In Kohn–Sham DFT (KS-DFT), the exchange-
correlation (XC) functional captures electron 
exchange (from Pauli exchange effects) and 
correlation (from electron interactions in the many-
body wavefunction).  However, this functional is 
only available in approximate forms; and usually the 
computational balance between accuracy and cost of 
KS-DFT is determined by that of the XC functional. A 
systematic way to improve this XC functionals was 
proposed by Perdew in his "Jacob’s ladder of density 
functional approximations" [3, 4], which introduces 
complexity in a controlled and physically motivated 
manner. Essentially this aims to approximate the 
exact XC functional by adhering to an incremental list 
of necessary physical constraints. 

While this “Jacob’s ladder” has been a 
guiding principle for several DFT functionals, 
progress has been relatively slow as the formal 
mathematical application of these constraints can get 
increasingly complex. But what if one could generate 
a DFT XC functional automatically, essentially fitting 
a neural network (NN) to known results from higher 
levels of theory, while also imposing all the possible 
constraints? 

We start from work already done in 
Fernandez-Serra's group, in which they created a NN 
model that relies on grid-based density descriptors 
[5]. In this work, they aim to construct an auto-
differentiable physically informed NNs to obtain the 
XC enhancement factors (Fx/c), which are defined as 
 

𝜖𝑥𝑐 =  𝐹𝑥𝜖𝑥
𝑈𝐸𝐺(𝑛,  𝜔) + 𝐹𝑐𝜖𝑐

𝑈𝐸𝐺(𝑛,  𝜔). 

 
This framework is called xcdiff. They perform 

this in 2 steps: first, they pre-train these NNs to fit 
known Fx/c functionals. Since starting the network 
from random weights would cause the SCF cycles to 
crash, adding this pretraining they ensure 
convergence. Secondly, the networks are trained by 
fitting atomization energies, ionization potentials and 
barrier heights obtained from DFT, and then they 
complete this with ground state electron densities and 
total atomic energies obtained with CCSD(T). 

xcdiff was later expanded into a new ML 
framework called xcquinox. xcquinox employs neural 
network architectures implemented in JAX, a library 
for automatically differentiable mathematical 
operations, allowing us to leverage PySCF-AD—an 
extension of the PySCF package that incorporates 
automatic differentiation capabilities. The use of an 
auto-differentiable network facilitates the access to 
derivatives of XC functionals, which are, in fact, the 
XC potentials used in the DFT calculation itself. 
xcquinox also includes the usage of descriptors to try 
to incorporate long-range effects. 

One thing that has not yet been fully explored 
is how successful these NN are at modeling density 
functionals in general. The noise in NN derivatives 
can effectively affect the generated XC potential, with 
a great impact in the self-consistency cycle. 

In this work, we aim to generate NN-based 
functionals that can reproduce already known XC 
functionals. We will focus on the pre-training step, 
since this will allow us to determine how errors 
propagate in learning a new XC functional starting 
from one already known. 
To refine the pre-training, we investigate the impact 
of imposing exact constraints based on established 
physical laws to improve results, using a physics-
informed approach.  

Additionally, we emphasize the importance of 
incorporating either exact potentials or exact 
densities in the training process, as training an energy 
functional without information about functional 
derivatives—essential for determining the XC 
potential—can lead to models that predict correct 
energies but yield incorrect densities. 
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Figures 
In figures 1-4, we show the absolute errors for 

our trained models for the exchange and the 
correlation enhancement factors (Fx and Fc 

respectively). These errors are evaluated for the 
enhancement factors themselves, their derivatives 
with respect to the charge density (n) and their 
derivatives with respect to the gradient of the charge 

density (∇𝑛 ). We plot these values with respect to s, 

which is a function of the charge density and its 
gradient: 
 

𝑠 =
∇𝑛

2(3𝜋2)1/3𝑛4/3
. 

 
We show the differences between a network 

trained without adding the gradients’ effect to the loss 
(fitting values) and adding it (fitting values and 
gradients). Preliminary results show that, in the case 
of exchange, the results are better if we consider 
these derivatives in the loss, but, contrarily, in the 
correlation, the results become worse. 

 

 
 
Figure 1. Absolute errors for our network for Fx, fitting it only 
to match values. 

 
 
Figure 2. Absolute errors for our network for Fx, fitting it to 
match values and gradients. 

 
 
Figure 3. Absolute errors for our network for Fc, fitting it only 
to match values. 

 
 
Figure 4. Absolute errors for our network for Fc, fitting it to 
match values and gradients. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


