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Abstract  
 
The rising demand for sustainable solutions to 
technological and societal challenges has driven 
significant research and development efforts to 
integrate machine learning (ML) techniques in 
computational physics and chemistry. As ML 
becomes more prevalent in interdisciplinary 
research, the amount of comprehensive quantum-
mechanical (QM) property data generated in recent 
years to train robust predictive models has 
significantly increased. Recently, we introduced 
high-fidelity property data at the level of non-
empirical hybrid density-functional theory (DFT) with 
a many-body treatment of vdW dispersion 
interactions (i.e., PBE0+MBD) for both small [1] and 
large [2] drug-like molecules in equilibrium and non-
equilibrium states. These datasets have been 
instrumental in advancing QM-based ML interatomic 
potentials (e.g., SO3LR [3]) and enhancing semi-
empirical methods (e.g., third-order density 
functional tight-binding DFTB3 [4]), enabling 
accurate (bio)molecular simulations. In this 
presentation, we will discuss our recent efforts to 
improve the transferability and generalizability of the 
ML-corrected DFTB3 method, see Figure 1. Within 
the DFTB method, the pairwise repulsive component 
has certain shortcomings, which we will address by 
training a many-body repulsive potential using 
neural networks (NNs). Indeed, we have 
demonstrated that equivariant NNs (e.g., SpookyNet 
and MACE) significantly enhance the accuracy and 
scalability of ML-based many-body repulsive 
potentials trained on energies and forces of small 
organic systems and molecular dimers. The 
developed framework, namely EN4TB, facilitates the 
calculation of the energetic and structural properties 
of large drug-like molecules and molecular dimers at 
a higher level of theory such as PBE0+MBD. 
Preliminary results are shown in Figure 1.  
Additionally, we have expanded this approach to 
investigate the structural and thermodynamic 
properties of potential candidates for organic 
electrodes in Li-battery applications [5]. For 

comparison, our results are compared with these 
obtained by ML force fields trained on full DFT 
reference data. Hence, EN4TB highlights the 
benefits of integrating ML with semi-empirical 
methods to achieve both high accuracy and 
computational efficiency, thereby paving the way for 
diverse applications in organic material simulations. 
See the  EN4TB GitHub repository for examples of 
how to use our approach. 
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Figures 
 

 

Figure 1. (a) Schematic of the EN4TB framework 
incorporating the ML-based many-body DFTB repulsive 
potentials. (b) Results of the predicted reaction path of 
tyrosine computed using nudged elastic band calculations 
with equivariant many-body repulsive potentials SP+ZBL 
(SpookyNet) and MACE. SNref is the potential trained in 
our previous work using SchNet architecture [4]. For 
comparison, PBE0 (reference method) and DFTB3 results 
are included. All calculations considered many-body 
dispersion correction. 

 

 

https://github.com/lmedranos/EN4TB

