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Abstract 
 
Maximally localized Wannier functions (MLWFs) are 
widely used in condensed matter physics and 
computational materials science. However, the 
construction of MLWFs used to rely on chemical 
intuition, constituting a roadblock for many 
researchers. Here, we showcase the automated 
algorithms and robust workflows we have developed 
to tackle such issues, addressing the cases of both 
metals and insulators [1,2]. On top of these, we build 
several MLWF databases for over 20,000 3D 
inorganic crystals and 2000 exfoliable 2D 
monolayers. These databases represent an 
"electronic-structure genome", as minimal but exact 
compressed encoding of the electronic structure of 
each material. Moreover, they provide accurate 
calculations of many materials properties, thanks to 
the very efficient Wannier interpolations. We 
demonstrate the power of the setup with three 
applications in materials discovery: (a) high-
performance thermoelectrics, (b) topological 
materials with large nonlinear Hall effect, and (c) 
heterostructures with polar discontinuity for two-
dimensional electron gases. We will also discuss 
how to reach beyond-DFT accuracy in the prediction 
of electronic-structure excitations (e.g., charged 
excitations such as band structures) using 
Koopmans spectral functionals [3,4]. 
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Figure 1. Isosurfaces for some of the 1.3M+ MLWFs 
obtained. 
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