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The discovery of novel solid electrolytes is crucial for
the development of next-generation energy storage de-
vices, as they offer enhanced charge capacity, stability,
and safety [1]. However, the traditional approach of re-
lying on density functional theory (DFT) calculations to
predict the ionic conductivity is computationally inten-
sive and has limited scalability. To overcome this bot-
tleneck, data-driven approaches can be employed to
accelerate the discovery process. One promising ap-
proach to accelerate solid electrolyte discovery is to re-
place DFT calculations with efficient machine-learned
(ML) interatomic potentials. Recent advances have led
to the development of universal potential models based
on graph neural networks (GNNs) which can infer en-
ergies and forces across a broad range of chemical
systems [2]. However, when applied to molecular dy-
namics (MD) or Nudge Elastic Band (NEB) simulations,
commonly used to estimate ionic mobility andmigration
barriers, these models exhibit increased generalization
errors as the studied systems are driven further away
from the training domain. This can make the predic-
tions less reliable and limit the overall screening effi-
ciency of such methods.

In this work, we explore two alternative data-driven
approaches for screening promising superionic can-
didates. The first approach addresses the computa-
tional bottleneck associated with calculating ion mobil-
ity from MD simulations, which requires numerous con-
secutive evaluations of the force field to estimate diffu-
sion coefficients. We aim to mitigate this by training an
ML model that can predict diffusion coefficients from a
limited number of force field evaluations. To achieve
this, we leverage a E3-equivariant graph neural net-
work (GNN) with node features being simply the atomic
accelerations under a given force field for a given con-
figuration. For the basic proof-of-principle demonstra-

tion, we constructed a dataset of diffusion coefficients
at T = 1000K for 179 structures from MD simulations
driven by a universal ML potential. To make a predic-
tion, we evaluate the force field at a random atomic
displacement from the equilibrium configuration and
feed the corresponding coordinates and accelerations
into the GNN. Importantly, we don’t provide the atomic
species as input to prevent the model from relying on
chemical information. The final prediction is then calcu-
lated as average over several random evaluations. The
learning curves for this model, shown in Fig. 1, along
with predictions compared with the ground truth diffu-
sion in Fig. 2, demonstrate that even this basic setup
yields predictive power, with coefficient of determina-
tion value above 0.5.

Our second method, described in [3], leverages a uni-
versal potential in a setting that minimizes its general-
ization errors by confining the atomic systems as close
as possible to the training domain via the frozen frame-
work approximation. Within this approximation, the po-
tential energy surface (PES) is inferred from the inter-
atomic potential model by varying the position of a sin-
gle mobile ion, while keeping the framework ions fixed
at their equilibrium positions. The obtained PES is then
used to calculate physically motivated descriptors de-
signed to correlate with ionic mobility based on the la-
beled data [4, 5]. Finally, these descriptors are used to
screen potential superionic materials. The overall log-
ical pipeline for this approach is shown in Fig. 3. Ab
initio MD validation results for our top predicted candi-
dates are shown in Fig. 4. Our top prediction, LiB3H8,
demonstrates an impressive ionic conductivity estimate
of 1.6± 0.4S / cm at T = 500K.
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Figure 1: Learning curves for the baseline model for Li
diffusivity prediction from the force field
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Figure 2: Baseline model predictions compared to the
ground truth labels for predicting Li diffusivity from the
force field (epoch 500, validation R2 = 0.53). Ground
truth MSD slopes are clipped from below at 10−4 Å2

/ps
(shown with triangles). The dashed black line corre-
sponds to X = Y .
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Figure 3: Analysis pipeline. See [3] for more details.
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Figure 4: Results of AIMD validation for the top pre-
dicted candidates [3]


