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Physics-informed neural networks (PINNs) have 
emerged as a promising tool for effectively resolving 
diverse partial differential equations (PDEs). 
However, their application to complex nonlinear 
systems, such as the coupled Allen-Cahn (AC) and 
Cahn-Hilliard (CH) equations [1,2] governing phase 
field interface dynamics, remains challenging due to 
inherent nonlinearities. To address these 
challenges, PF-PINNs [3], a robust, enhanced 
framework tailored for solving coupled AC-CH phase 
field problems, was developed. 
 
The PF-PINNs framework includes three key 
features. First, a scale-adaptive normalization-
denormalization technique bridges disparities in 
temporal and spatial scales inherent to real-world 
physical problems, enabling stable training across 
diverse domains. Second, a dynamic interface 
sampling strategy is developed to efficiently resolve 
the diffusion of initial interfaces and adaptively track 
their evolution during neural network training. Third, 
a balanced loss optimization scheme combines 
neural tangent kernel (NTK) inspired adaptive 
weighting with a random-batch approach to 
equilibrate competing loss terms arising from the 
coupled governing equations. Essential framework 
features are depicted in Figure 1. 
 
To validate the framework, numerical experiments 
were conducted on electrochemical corrosion 
problems, a representative application of AC and CH 
phase field modeling. The results demonstrate PF-
PINNs accuracy and computational efficiency, with 
close agreement to reference solutions generated 
using the FEniCS finite element solver (see Figure 
2). These benchmarks underscore the framework 
versatility in addressing a broad spectrum of phase 
field challenges, positioning PF-PINNs as a 
transformative tool for interface modeling in 
materials science, and beyond. 
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Figure 1. Schematic of the PF-PINNs framework 
 

 

 
Figure 2. Two-dimensional semi-circular pitting 
corrosion evolution. Contours of phase-field variable 
obtained from PF-PINNs framework, FE solution, 
and their absolute error at two representative time 
points. 
 
 
 
 


