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Thermoplastic vulcanizates (TPVs) represent a very 
interesting material choice for many industrial 
applications due to their light weight, recyclability, 
design flexibility, and ease of processing by injection 
molding process [1, 2].  TPVs are composed of a high 
amount of crosslinked rubber particles dispersed in a 
thermoplastic matrix, and they are aimed to replace 
traditional, non-recyclable thermoset rubbers. 
 
Efficiently designing TPV-based products presents 
significant challenges due to their nonlinear 
mechanical behavior and inherent heterogeneity. The 
mechanical properties of these materials are strongly 
influenced by their microstructure and the injection 
molding process parameters [3]. Additionally, the 
shearing stresses encountered during injection 
molding can introduce anisotropic characteristics, 
further complicating the prediction and optimization of 
their performance [4]. Current commercial simulation 
tools for injection molding are inadequate for 
accurately capturing the unique attributes of TPVs 
and the intricate interactions among processing 
conditions, microstructure, and material properties, 
thereby limiting their utility in product development. 
 
The rise of artificial intelligence, “big data”, and the 
fourth paradigm of science, — which emphasizes 
data-driven discovery [5] — offers a promising path to 
tackle complex challenges in science and 
engineering. Machine learning (ML), encompassing 
data-driven regression and optimization algorithms, 
enables the modeling of complex relationships 
between injection molding parameters and material 
performance. Materials informatics, which merges ML 
with materials science, has demonstrated significant 
potential for material property prediction and 
establishing process-structure-property linkages [6, 
7]. 
 
This study evaluates the use of ML to identify key 
injection molding parameters that influence the 
mechanical properties of TPVs and enable accurate 
prediction of stress-strain behavior for product 
design. In this context, interpretable and explainable 
ML models are sought to foster the adoption of data-
driven methods in the industry. 
 
To generate the training dataset, a full factorial design 
of experiments (DOE) was conducted, producing 32 
TPV plaques under varying processing conditions. 

Dumbbell-shaped specimens were prepared from the 
middle and end regions of each plaque in both the 
transverse and longitudinal flow directions. Cyclic 
tensile tests were performed to measure two target 
properties: stress at 30% strain and the residual strain 
obtained after unloading from the 30% strain cycle. 
This procedure resulted in a database of 128 
samples.  
 
ML models with varying levels of complexity and 
interpretability (linear regression, decision trees, 
random forests, gradient boosting algorithms, and 
neural networks) were assessed to predict target 
mechanical properties using a rigorous evaluation 
protocol based on k-fold cross-validation and group 
splitting. 
 
Random forests exhibited performance equivalent to 
that of more advanced models, achieving relative 
errors below 10% in almost 90% of predictions for 
both stress and residual strain (Figures 1 and 2). 
SHapley Additive exPlanations (SHAP) were used to 
interpret the models, revealing the most influential 
injection molding parameters (Figure 3).  
 
These findings highlight the potential of ML for 
correlating injection molding parameters and TPV 
mechanical properties, ultimately streamlining the 
TPV product design and development workflow. 
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Figures 
 

 
Figure 1. Parity plot illustrating the performance of the 
Random Forest model in predicting stress at 30% strain 
cycle, with results from the different cross-validation folds. 

 

 
 
Figure 2. Parity plot illustrating the performance of the 
Random Forest model in predicting residual strain at 30% 
strain cycle, with results from the different cross-validation 
folds. 
 

 
Figure 3. Feature importance and impact analysis using 
SHAP in the Random Forest model. 


